skip to main content
research-article
Public Access

Natural Boundary Conditions for Smoothing in Geometry Processing

Published:12 May 2018Publication History
Skip Abstract Section

Abstract

In geometry processing, smoothness energies are commonly used to model scattered data interpolation, dense data denoising, and regularization during shape optimization. The squared Laplacian energy is a popular choice of energy and has a corresponding standard implementation: squaring the discrete Laplacian matrix. For compact domains, when values along the boundary are not known in advance, this construction bakes in low-order boundary conditions. This causes the geometric shape of the boundary to strongly bias the solution. For many applications, this is undesirable. Instead, we propose using the squared Frobenius norm of the Hessian as a smoothness energy. Unlike the squared Laplacian energy, this energy’s natural boundary conditions (those that best minimize the energy) correspond to meaningful high-order boundary conditions. These boundary conditions model free boundaries where the shape of the boundary should not bias the solution locally. Our analysis begins in the smooth setting and concludes with discretizations using finite-differences on 2D grids or mixed finite elements for triangle meshes. We demonstrate the core behavior of the squared Hessian as a smoothness energy for various tasks.

Skip Supplemental Material Section

Supplemental Material

tog37-2-a23-stein.mp4

mp4

188.3 MB

References

  1. E. D. Andersen and K. D. Andersen. 2000. The mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization. Kluwer Academic Publishers, 197--232.Google ScholarGoogle Scholar
  2. James Andrews, Pushkar Joshi, and Nathan Carr. 2011. A linear variational system for modeling from curves. Comput. Graph. Forum 30, 6, 1850--1861.Google ScholarGoogle ScholarCross RefCross Ref
  3. Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces—an operator approach. ACM Trans. Graph. 34, 3 (May 2015), Article 29, 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ilya Baran and Jovan Popović. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3 (2007), 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Christopher Batty. 2010. Simulating Viscous Incompressible Fluids with Embedded Boundary Finite Difference Methods. Ph.D. Dissertation. University of British Columbia.Google ScholarGoogle Scholar
  6. M. Belkin and P. Niyogi. 2004. Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56, 1--3 (2004), 209--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A quadratic bending model for inextensible surfaces. In Proceedings of the 4th Eurographics Symposium on Geometry Processing (SGP’06). 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Morten Bojsen-Hansen and Chris Wojtan. 2016. Generalized non-reflecting boundaries for fluid re-simulation. ACM Trans. Graph. 35, 4 (2016), Article 96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. F. L. Bookstein. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11, 6, 567--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Mario Botsch and Leif Kobbelt. 2004. A remeshing approach to multiresolution modeling. In Proceedings of the 2nd Eurographics Symposium on Geometry Processing (SGP’04). 189--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Botsch and L. Kobbelt. 2005. Real-time shape editing using radial basis functions. Comp. Graph. Forum 24, 3 (2005), 611--621.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. Braess. 2002. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (2nd ed.; Vol. 13). Cambridge University Press.Google ScholarGoogle Scholar
  13. D. Braess, A. S. Pechstein, and J. Schöberl. 2017. An equilibration based a posteriori error estimate for the biharmonic equation and two finite element methods. arXiv:1705.07607.Google ScholarGoogle Scholar
  14. A. Bronstein, Y. Choukroun, R. Kimmel, and M. Sela. 2016. Consistent discretization and minimization of the l1 norm on manifolds. In Proceedings of the 4th International Conference on 3D Vision (3DV’16).Google ScholarGoogle Scholar
  15. Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. 2015. Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34, 4, Article 46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2014. Facewarehouse: A 3D facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20, 3, 413--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Renjie Chen and Ofir Weber. 2015. Bounded distortion harmonic mappings in the plane. ACM Trans. Graph. 34, 4, Article 73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Daniel Cohen-Steiner and Mathieu Desbrun. 2002. Hindsight: LSCM and DNCP Are One and the Same. Technical Report. INRIA-USC.Google ScholarGoogle Scholar
  19. M. I. Comodi. 1989. The Hellan-Herrmann-Johnson method: Some new error estimates and postprocessing. Math. Comput. 52, 185 (1989), 17--29.Google ScholarGoogle ScholarCross RefCross Ref
  20. Richard Courant and David Hilbert. 1924. Methoden der Mathematischen Physik I. Knight, Berlin, Germany.Google ScholarGoogle Scholar
  21. Keenan Crane. 2009. A Cotangent Laplacian for Surfaces with Boundary. Technical Report. INRIA-USC.Google ScholarGoogle Scholar
  22. Fernando de Goes, Beibei Liu, Max Budninskiy, Yiying Tong, and Mathieu Desbrun. 2014. Discrete 2-tensor fields on triangulations. Comp. Graph. Forum 33, 5, 13--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mathieu Desbrun, Mark Meyer, and Pierre Alliez. 2002. Intrinsic parameterizations of surface meshes. Comp. Graph. Forum 21, 3 (2002), 209--218.Google ScholarGoogle ScholarCross RefCross Ref
  24. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the ACM SIGGRAPH Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stephan Didas and Joachim Weickert. 2004. Higher Order Variational Methods for Noise Removal in Signals and Images. Diploma Thesis. Saarland University, Saarbrücken.Google ScholarGoogle Scholar
  26. Stephan Didas, Joachim Weickert, and Bernhard Burgeth. 2009. Properties of higher order nonlinear diffusion filtering. J. Math. Imag. Vis. 35, 3 (2009), 208--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. David L. Donoho and Carrie Grimes. 2003. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. U S A 100, 10, 5591--5596.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lawrence C. Evans. 1998. Partial Differential Equations. American Mathematical Society, Providence, RI.Google ScholarGoogle Scholar
  29. Carlos A. Felippa. 2017. Advanced Finite Element Methods—Course Notes. Retrieved from https://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/.Google ScholarGoogle Scholar
  30. Mark Finch, John Snyder, and Hugues Hoppe. 2011. Freeform vector graphics with controlled thin-plate splines. ACM Trans. Graph. 30, 6, Article 166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3 (2007), Article 56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Bengt Fornberg. 1988. Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51, 184, 699--706.Google ScholarGoogle Scholar
  33. A. Garg, E. Grinspun, M. Wardetzky, and D. Zorin. 2007. Cubic shells. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. I. M. Gelfand and S. V. Fomin. 1963. Calculus of Variations. Prentice Hall.Google ScholarGoogle Scholar
  35. T. G. Georgiev. 2004. Photoshop healing brush: A tool for seamless cloning. In Proceedings of the ECCV ACV Workshop. 1--8.Google ScholarGoogle Scholar
  36. Mariano Giaquinta and Stefan Hildebrandt. 1996. Calculus of Variations I. Springer.Google ScholarGoogle Scholar
  37. Y. I. Gingold, P. Davidson, J. Han, and D. Zorin. 2006. A direct texture placement and editing interface. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology. 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Godil, A. Axenopoulos, P. Daras, T. Furuya, and R. Ohbuchi. 2009. SHREC 2009: Shape retrieval contest of partial 3D models. In Proceedings of the Eurographics Workshop on 3D Object Retrieval. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Lei He and Scott Schaefer. 2013. Mesh denoising via L0 minimization. ACM Trans. Graph. 32, 4, Article 64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Klaus Hildebrandt, Christian Schulz, Christoph Von Tycowicz, and Konrad Polthier. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ronald Hoppe, Dietrich Braess, and Christopher Linsenmann. 2016. A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM. Available at https://www.esaim-m2an.org.Google ScholarGoogle Scholar
  42. Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3 (2006), 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), Article 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Jacobson, Z. Deng, L. Kavan, and J. P. Lewis. 2014. Skinning: Real-time shape deformation. In ACM SIGGRAPH 2014 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Alec Jacobson, Daniele Panozzo, Christian Shuller, Olga Diamanti, Qingnan Zhou. Sebastian Koch, Jeremie Dumas, et al. 2017. Libigl: A Simple C++ Geometry Processing Library. Retrieved from http://libigl.github.io/libigl.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin. 2010. Mixed finite elements for variational surface modeling. In Proceedings of the 8th Eurographics Symposium on Geometry Pressing (SGP’10).Google ScholarGoogle ScholarCross RefCross Ref
  47. Alec Jacobson, Tino Weinkauf, and Olga Sorkine. 2012. Smooth shape-aware functions with controlled extrema. In Proceedings of the 10th Eurographics Symposium on Geometry Processing (SGP’12).Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Ben Jones, Nils Thuerey, Tamar Shinar, and Adam W. Bargteil. 2016. Example-based plastic deformation of rigid bodies. ACM Trans. Graph. 35, 4, Article 34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Ladislav Kavan, Dan Gerszewski, Adam Bargteil, and Peter-Pike Sloan. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 34, 4, Article 93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Kwang I. Kim, Florian Steinke, and Matthias Hein. 2009. Semi-supervised regression using Hessian energy with an application to semi-supervised dimensionality reduction. In Advances in Neural Information Processing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Bishnu P. Lamichhane. 2011. A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. J. Comp. Appl. Math. 235, 17, 5188--5197.Google ScholarGoogle ScholarCross RefCross Ref
  52. E. Landreneau and S. Schaefer. 2010. Poisson-based weight reduction of animated meshes. Comp. Graph. Forum 29, 6 (2010), 1945--1954.Google ScholarGoogle ScholarCross RefCross Ref
  53. Stamatios Lefkimmiatis, Aurélien Bourquard, and Michael Unser. 2012. Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21, 3 (2012), 983--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. B. Lévy, S. Petitjean, N. Ray, and J. Maillot. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3 (2002), 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. W. L. Li. 2000. Free vibrations of beams with general boundary conditions. J. Sound Vib. 237, 4 (2000), 709--725.Google ScholarGoogle ScholarCross RefCross Ref
  56. Yaron Lipman, Raif Rustamov, and Thomas Funkhouser. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3 (2010), Article 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. 35, 3, Article 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. X. Y. Liu, C.-H. Lai, and K. A. Pericleous. 2015. A fourth-order partial differential equation denoising model with an adaptive relaxation method. Int. J. Comput. Math. 92, 3 (2015), 608--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Marius Lysaker, Arvid Lundervold, and Xue-Cheng Tai. 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 12, 1579--1590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Marius Lysaker and Xue-Cheng Tai. 2006. Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66, 1, 5--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. 2008. Spectral conformal parameterization. In Proceedings of the 6th Eurographics Symposium on Geometry Processing (SGP’08). Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experiment. Math. 2, 1 (1993), 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  63. Jean Marc Roth. 2009. Higher Order Anisotropic Smoothing of Images. Ph.D. Dissertation. Saarland University.Google ScholarGoogle Scholar
  64. Leonid I. Rudin, Stanley Osher, and Emad Fatemi. 1992. Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60, 1 (1992), 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Raif M. Rustamov. 2011. Multiscale Biharmonic Kernels. Retrieved from https://diglib.eg.org/handle/10.1111/v30i5pp1521-1531.Google ScholarGoogle Scholar
  66. R. Scholz. 1978. A mixed method for 4th order problems using linear finite elements. RAIRO Anal. Numér. 1, 85--90.Google ScholarGoogle ScholarCross RefCross Ref
  67. Olga Sorkine, Yaron Lipman, Daniel Cohen-Or, Marc Alexa, Christian Rössl, and Hans-Peter Seidel. 2004. Laplacian surface editing. In Proceedings of the 2nd Eurographics Symposium on Geometry Processing (SGP’04). 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3, Article 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Gabriele Steidl. 2006. A note on the dual treatment of higher-order regularization functionals. Computing 76, 1--2 (2006), 135--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Gabriele Steidl, Stephan Didas, and Julia Neumann. 2005. Relations between higher order TV regularization and support vector regression. In Proceedings of the International Conference on Scale-Space Theories in Computer Vision. 515--527. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Florian Steinke and Matthias Hein. 2009. Non-parametric regression between manifolds. In Advances in Neural Information Processing Systems. 1561--1568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-ray: Bas-relief meshes for adding global illumination effects to hand-drawn characters. ACM Trans. Graph. 33, 2, Article 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Demetri Terzopoulos. 1984. Multilevel reconstruction of visual surfaces: Variational principles and finite-element representations. In Multiresolution Image Processing and Analysis. Springer, 237--310.Google ScholarGoogle Scholar
  74. Demetri Terzopoulos. 1988. The computation of visible-surface representations. IEEE Trans. Pattern Anal. Mach. Intell. 10, 4 (1988), 417--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. E. Tosun, Y. I. Gingold, J. Reisman, and D. Zorin. 2007. Shape optimization using reflection lines. In Proceedings of the 5th Eurographics Symposium on Geometry Processing (SGP’07). Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace design for real-time shape deformation. ACM Trans. Graph. 34, 4, Article 57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2017. Error in “Linear Subspace Design for Real-Time Shape Deformation”. Technical Report.Google ScholarGoogle Scholar
  78. Ofir Weber, Roi Poranne, and Craig Gotsman. 2012. Biharmonic coordinates. In Comput. Graph. Forum, 31, 2409--2422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Tino Weinkauf, Yotam Gingold, and Olga Sorkine. 2010. Topology-based smoothing of 2D scalar fields with -continuity. Comput. Graph. Forum 29, 3 (2010), 1221--1230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. 2011. Image smoothing via L0 gradient minimization. ACM Trans. Graph. 30, 6, Article 174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Y.-L. You and M. Kaveh. 2000. Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9, 10 (2000), 1723--1730. Google ScholarGoogle ScholarCross RefCross Ref
  82. Jing Yuan, Christoph Schnörr, and Gabriele Steidl. 2009. Total-variation based piecewise affine regularization. In Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision. 552--564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Hao Zhang, Oliver van Kaick, and Ramsay Dyer. 2007. Spectral methods for mesh processing and analysis. In Proceedings of the Eurographics State-of-the-Art Report. 1--22.Google ScholarGoogle Scholar
  84. Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2005. Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph, 24, 3 (2005), 496--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Kun Zhou, Weiwei Xu, Yiying Tong, and Mathieu Desbrun. 2010. Deformation transfer to multi-component objects. Comp. Graph. Forum 29, 2 (2010), 319--325.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Natural Boundary Conditions for Smoothing in Geometry Processing

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 37, Issue 2
              April 2018
              244 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/3191713
              Issue’s Table of Contents

              Copyright © 2018 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 12 May 2018
              • Accepted: 1 February 2018
              • Revised: 1 December 2017
              • Received: 1 October 2017
              Published in tog Volume 37, Issue 2

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader