skip to main content
research-article

Real-time high-fidelity facial performance capture

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We present the first real-time high-fidelity facial capture method. The core idea is to enhance a global real-time face tracker, which provides a low-resolution face mesh, with local regressors that add in medium-scale details, such as expression wrinkles. Our main observation is that although wrinkles appear in different scales and at different locations on the face, they are locally very self-similar and their visual appearance is a direct consequence of their local shape. We therefore train local regressors from high-resolution capture data in order to predict the local geometry from local appearance at runtime. We propose an automatic way to detect and align the local patches required to train the regressors and run them efficiently in real-time. Our formulation is particularly designed to enhance the low-resolution global tracker with exactly the missing expression frequencies, avoiding superimposing spatial frequencies in the result. Our system is generic and can be applied to any real-time tracker that uses a global prior, e.g. blend-shapes. Once trained, our online capture approach can be applied to any new user without additional training, resulting in high-fidelity facial performance reconstruction with person-specific wrinkle details from a monocular video camera in real-time.

Skip Supplemental Material Section

Supplemental Material

References

  1. Beeler, T., Bickel, B., Sumner, R., Beardsley, P., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beeler, T., Bradley, D., Zimmer, H., and Gross, M. 2012. Improved reconstruction of deforming surfaces by cancelling ambient occlusion. In ECCV. 30--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bermano, A. H., Bradley, D., Beeler, T., Zund, F., Nowrouzezahrai, D., Baran, I., Sorkine-Hornung, O., Pfister, H., Sumner, R. W., Bickel, B., and Gross, M. 2014. Facial performance enhancement using dynamic shape space analysis. ACM Trans. Graphics 33, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. 2007. Multi-scale capture of facial geometry and motion. ACM Trans. Graphics (Proc. SIGGRAPH), 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bouaziz, S., Wang, Y., and Pauly, M. 2013. Online modeling for realtime facial animation. ACM Trans. Graphics (Proc. SIGGRAPH) 32, 4, 40:1--40:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 41:1--41:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cao, X., Wei, Y., Wen, F., and Sun, J. 2012. Face alignment by explicit shape regression. In IEEE CVPR, 2887--2894. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cao, C., Weng, Y., Lin, S., and Zhou, K. 2013. 3d shape regression for real-time facial animation. ACM Trans. Graphics (Proc. SIGGRAPH) 32, 4, 41:1--41:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cao, C., Hou, Q., and Zhou, K. 2014. Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. Graphics (Proc. SIGGRAPH) 33, 4, 43:1--43:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chai, J.-X., Xiao, J., and Hodgins, J. 2003. Vision-based control of 3d facial animation. In SCA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, Y.-L., Wu, H.-T., Shi, F., Tong, X., and Chai, J. 2013. Accurate and robust 3d facial capture using a single rgbd camera. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dutreve, L., Meyer, A., and Bouakaz, S. 2011. Easy acquisition and real-time animation of facial wrinkles. Comput. Animat. Virtual Worlds 22, 2-3, 169--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Furukawa, Y., and Ponce, J. 2009. Dense 3d motion capture for human faces. In CVPR.Google ScholarGoogle Scholar
  15. Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. In ACM Trans. Graphics (Proc. SIGGRAPH Asia), vol. 32, 158:1--158:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 6, 129:1--129:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Huang, H., Chai, J., Tong, X., and Wu, H.-T. 2011. Leveraging motion capture and 3d scanning for high-fidelity facial performance acquisition. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 74:1--74:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Klaudiny, M., and Hilton, A. 2012. High-detail 3d capture and non-sequential alignment of facial performance. In 3DIM-PVT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, H., Yu, J., Ye, Y., and Bregler, C. 2013. Realtime facial animation with on-the-fly correctives. ACM Trans. Graphics (Proc. SIGGRAPH) 32, 4, 42:1--42:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Li, J., Xu, W., Cheng, Z., Xu, K., and Klein, R. 2015. Lightweight wrinkle synthesis for 3d facial modeling and animation. Computer-Aided Design 58, 0, 117--122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th IJCAI, 674--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Eurographics Symposium on Rendering, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., and Debevec, P. 2008. Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 27, 5, 121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rhee, T., Hwang, Y., Kim, J. D., and Kim, C. 2011. Realtime facial animation from live video tracking. In Proc. SCA, 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graphics 25, 3, 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shi, F., Wu, H.-T., Tong, X., and Chai, J. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graphics 23, 3, 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Suwajanakorn, S., Kemelmacher-Shlizerman, I., and Seitz, S. M. 2014. Total moving face reconstruction. In ECCV.Google ScholarGoogle Scholar
  29. Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.-P., and Theobalt, C. 2012. Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weise, T., Li, H., Van Gool, L., and Pauly, M. 2009. Face/off: live facial puppetry. In Proc. SCA, 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Weise, T., Bouaziz, S., Li, H., and Pauly, M. 2011. Real-time performance-based facial animation. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: high resolution capture for modeling and animation. ACM Trans. Graphics (Proc. SIGGRAPH), 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real-time high-fidelity facial performance capture

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 4
          August 2015
          1307 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2809654
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2015
          Published in tog Volume 34, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader