skip to main content
research-article
Public Access

A Smoothness Energy without Boundary Distortion for Curved Surfaces

Published:18 March 2020Publication History
Skip Abstract Section

Abstract

Current quadratic smoothness energies for curved surfaces either exhibit distortions near the boundary due to zero Neumann boundary conditions or they do not correctly account for intrinsic curvature, which leads to unnatural-looking behavior away from the boundary. This leads to an unfortunate trade-off: One can either have natural behavior in the interior or a distortion-free result at the boundary, but not both. We introduce a generalized Hessian energy for curved surfaces, expressed in terms of the covariant one-form Dirichlet energy, the Gaussian curvature, and the exterior derivative. Energy minimizers solve the Laplace-Beltrami biharmonic equation, correctly accounting for intrinsic curvature, leading to natural-looking isolines. On the boundary, minimizers are as-linear-as-possible, which reduces the distortion of isolines at the boundary. We discretize the covariant one-form Dirichlet energy using Crouzeix-Raviart finite elements, arriving at a discrete formulation of the Hessian energy for applications on curved surfaces. We observe convergence of the discretization in our experiments.

Skip Supplemental Material Section

Supplemental Material

References

  1. E. D. Andersen and K. D. Andersen. 2000. The <scp;>MOSEK</scp;> interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization. Kluwer Academic Publishers, 197--232.Google ScholarGoogle Scholar
  2. Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces—an operator approach. ACM Trans. Graph. 34, 3 (May 2015), 29:1--29:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ilya Baran and Jovan Popovic. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3 (July 2007), 72--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A quadratic bending model for inextensible surfaces. In Proceedings of the 4th Eurographics Symposium on Geometry Processing. 227--230.Google ScholarGoogle Scholar
  5. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3 (Aug. 2008), 63:1--63:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Bochner. 1946. Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52, 9 (1946), 776--797.Google ScholarGoogle ScholarCross RefCross Ref
  7. Daniele Boffi, Franco Brezzi, and Michel Fortin. 2013. Mixed Finite Element Methods and Applications. Springer-Verlag Berlin.Google ScholarGoogle Scholar
  8. Mario Botsch and Leif Kobbelt. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23, 3 (Aug. 2004), 630--634.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dietrich Braess. 2007. Finite Elements (3rd ed.). Cambridge University Press.Google ScholarGoogle Scholar
  10. Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2018. Modeling n-symmetry vector fields using higher-order energies. ACM Trans. Graph. 37, 2 (Mar. 2018), 18:1--18:18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Susanne C. Brenner. 2015. Forty years of the Crouzeix-Raviart element. Numer. Meth. Part. Differ. Equat. 31, 2 (2015), 367--396.Google ScholarGoogle ScholarCross RefCross Ref
  12. Etienne Corman and Maks Ovsjanikov. 2019. Functional characterization of deformation fields. ACM Trans. Graph. 38, 1 (Jan. 2019), 8:1--8:19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Courant and D. Hilbert. 1924. Methoden der Mathematischen Physik—Erster Band. Julius Springer, Berlin.Google ScholarGoogle Scholar
  14. Keenan Crane. 2018. Keenan’s 3D Model Repository. Retrieved from https://www.cs.cmu.edu/kmcrane/Projects/ModelRepository/.Google ScholarGoogle Scholar
  15. Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial connections on discrete surfaces. Comput. Graph. For. 29, 5 (2010), 1525--1533.Google ScholarGoogle Scholar
  16. Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013a. Robust fairing via conformal curvature flow. ACM Trans. Graph. 32, 4 (July 2013), Article 61,10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013b. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (Oct. 2013), 152:1--152:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Michel Crouzeix and P.-A. Raviart. 1973. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM: Math. Modell. Numer. Anal.—Modél. Math. Anal. Numér. 7, R3 (1973), 33--75.Google ScholarGoogle Scholar
  19. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, 317--324.Google ScholarGoogle Scholar
  20. Stephan Didas, Joachim Weickert, and Bernhard Burgeth. 2009. Properties of higher order nonlinear diffusion filtering. J. Math. Imag. Vis. 35, 3 (2009), 208--226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. David L. Donoho and Carrie Grimes. 2003. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Nat. Acad. Sci. 100, 10 (2003), 5591--5596. DOI:https://doi.org/10.1073/pnas.1031596100Google ScholarGoogle ScholarCross RefCross Ref
  22. R. J. Duffin. 1959. Distributed and lumped networks. J. Math. Mech. 8, 5 (1959), 793--826.Google ScholarGoogle Scholar
  23. Gerhard Dziuk. 1988. Finite Elements for the Beltrami Operator on Arbitrary Surfaces. Springer Berlin, 142--155.Google ScholarGoogle Scholar
  24. Elliot English and Robert Bridson. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. Graph. 27, 3 (Aug. 2008), 66:1--66:5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lawrence C. Evans. 2010. Partial Differential Equations: (2nd ed.). American Mathematical Society.Google ScholarGoogle Scholar
  26. P. J. Federico. 1982. Descartes on Polyhedra. Springer-Verlag New York Inc.Google ScholarGoogle Scholar
  27. Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers. 2010. Polyharmonic Boundary Value Problems. Springer-Verlag Berlin.Google ScholarGoogle Scholar
  29. Todor Georgiev. 2004. Photoshop healing brush: A tool for seamless cloning. In Proceedings of the European Conference on Computer Vision.Google ScholarGoogle Scholar
  30. Stanford Graphics. 2014. The Stanford 3D Scanning Repository. Retrieved from http://graphics.stanford.edu/data/3Dscanrep/.Google ScholarGoogle Scholar
  31. Eitan Grinspun, Mathieu Desbrun, Konrad Polthier, Peter Schröder, and Ari Stern. 2006. Discrete differential geometry: An applied introduction. In Proceedings of the ACM SIGGRAPH 2006 Courses (SIGGRAPH’06). ACM, New York, NY.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Gaël Guennebaud, Benoît Jacob et al. 2010. Eigen v3. Retrieved from http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  33. Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. 2006. On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedic. 123, 1 (Dec. 2006), 89--112.Google ScholarGoogle Scholar
  34. Alec Jacobson. 2013. Algorithms and Interfaces for Real-time Deformation of 2D and 3D Shapes. Ph.D. Dissertation. ETH Zürich.Google ScholarGoogle Scholar
  35. Alec Jacobson. 2019. gptoolbox—Geometry Processing Toolbox. Retrieved from https://github.com/alecjacobson/gptoolbox.Google ScholarGoogle Scholar
  36. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (July 2011), 78:1--78:8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Alec Jacobson, Daniele Panozzo et al. 2019a. libigl: A Simple C++ Geometry Processing Library. Retrieved from http://libigl.github.io/libigl/.Google ScholarGoogle Scholar
  38. Alec Jacobson, Daniele Panozzo et al. 2019b. Libigl Tutorial Data. Retrieved from https://github.com/libigl/libigl-tutorial-data.Google ScholarGoogle Scholar
  39. Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin. 2010. Mixed finite elements for variational surface modeling. Comput. Graph. For. 29, 5 (2010), 1565--1574.Google ScholarGoogle Scholar
  40. Alec Jacobson, Tino Weinkauf, and Olga Sorkine. 2012. Smooth shape-aware functions with controlled extrema. Comput. Graph. For. 31, 5 (Aug. 2012), 1577--1586.Google ScholarGoogle Scholar
  41. jansentee3d. 2018. Dragon Tower. Retrieved from https://www.thingiverse.com/thing:3155868.Google ScholarGoogle Scholar
  42. Javo. 2016. Big Gladiator Helmet. Retrieved from https://www.thingiverse.com/thing:1345281.Google ScholarGoogle Scholar
  43. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (July 2007), 71--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jürgen Jost. 2011. Riemannian Geometry and Geometric Analysis. Springer-Verlag Berlin.Google ScholarGoogle Scholar
  45. Kwang I. Kim, Florian Steinke, and Matthias Hein. 2009. Semi-supervised regression using Hessian energy with an application to semi-supervised dimensionality reduction. In Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta (Eds.). Curran Associates, Inc., 979--987.Google ScholarGoogle Scholar
  46. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (July 2013), 59:1--59:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4 (July 2015), 39:1--39:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. John M. Lee. 1997. Riemannian Manifolds. Springer-Verlag New York, Inc.Google ScholarGoogle Scholar
  49. Stamatis Lefkimmiatis, Aurélien Bourquard, and Michael Unser. 2011. Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Proc. 21 (09 2011), 983--95.Google ScholarGoogle Scholar
  50. Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization using optimization. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). Association for Computing Machinery, New York, NY, 689--694.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yaron Lipman, Raif M. Rustamov, and Thomas A. Funkhouser. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3 (July 2010), 27:1--27:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. 35, 3 (Mar. 2016), 23:1--23:17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. X. Y. Liu, C. H. Lai, and K. A. Pericleous. 2015. A fourth-order partial differential equation denoising model with an adaptive relaxation method. Int. J. Comput. Math. 92, 3 (Mar. 2015), 608--622.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Master’s Thesis. University of Utah.Google ScholarGoogle Scholar
  55. M. Lysaker, A. Lundervold, and Xue-Cheng Tai. 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Proc. 12, 12 (Dec. 2003), 1579--1590.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Richard H. MacNeal. 1949. The Solution of Partial Differential Equations by Means of Electrical Networks. Ph.D. Dissertation. California Institute of Technology.Google ScholarGoogle Scholar
  57. MATLAB. 2019. version 9.6 (R2019a). The MathWorks Inc.Google ScholarGoogle Scholar
  58. Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2nd ed.). Springer Science + Business Media, LLC.Google ScholarGoogle Scholar
  59. Pascal Peter, Sebastian Hoffmann, Frank Nedwed, Laurent Hoeltgen, and Joachim Weickert. 2016. Evaluating the true potential of diffusion-based inpainting in a compression context. Image Commun. 46, C (Aug. 2016), 40--53.Google ScholarGoogle Scholar
  60. Peter Petersen. 2006. Riemannian Geometry (2nd ed.). Springer Science + Business Media, LLC.Google ScholarGoogle Scholar
  61. Konrad Polthier and Markus Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. Springer Berlin, 135--150. DOI:https://doi.org/10.1007/978-3-662-03567-2_11Google ScholarGoogle Scholar
  62. Alessio Quaglino. 2012. Membrane Locking in Discrete Shell Theories. Ph.D. Dissertation. Universität Göttingen.Google ScholarGoogle Scholar
  63. Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1 (Dec. 2009), 1:1--1:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. John William Strutt Rayleigh. 1894. The Theory of Sound. Vol. 1. Macmillan and Co.Google ScholarGoogle Scholar
  65. Reinhard Scholz. 1978. A mixed method for 4th order problems using linear finite elements. RAIRO. Anal. numér. 12, 1 (1978), 85--90.Google ScholarGoogle Scholar
  66. Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2018. The vector heat method. CoRR abs/1805.09170 (2018). Retrieved from http://arxiv.org/abs/1805.09170.Google ScholarGoogle Scholar
  67. O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Laplacian surface editing. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM, New York, NY, 175--184.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Oded Stein, Eitan Grinspun, Max Wardetzky, and Alec Jacobson. 2018. Natural boundary conditions for smoothing in geometry processing. ACM Trans. Graph. 37, 2 (May 2018), 23:1--23:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-ray: Bas-relief meshes for adding global illumination effects to hand-drawn characters. ACM Trans. Graph. 33, 2 (Apr. 2014), Article 16, 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and processing. Comput. Graph. For. 35, 2 (2016), 545--572.Google ScholarGoogle Scholar
  71. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace design for real-time shape deformation. ACM Trans. Graph. 34, 4 (2015), 57:1--57:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2017. Error in “Linear Subspace Design for Real-time Shape Deformation.” Technical Report.Google ScholarGoogle Scholar
  73. Max Wardetzky. 2006. Discrete Differential Operators on Polyhedral Surfaces—Convergence and Approximation. Ph.D. Dissertation. FU Berlin.Google ScholarGoogle Scholar
  74. Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete laplace operators: No free lunch. In Proceedings of the 5th Eurographics Symposium on Geometry Processing (SGP’07). Eurographics Association, 33--37.Google ScholarGoogle Scholar
  75. Ofir Weber, Roi Poranne, and Craig Gotsman. 2012. Biharmonic coordinates. Comput. Graph. For. 31, 8 (2012), 2409--2422.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gotsman. 2007. Context-aware skeletal shape deformationss. Comput. Graph. For. 26, 3 (2007), 265--274.Google ScholarGoogle Scholar
  77. Tino Weinkauf, Yotam Gingold, and Olga Sorkine. 2010. Topology-based smoothing of 2D scalar fields with C1-continuity. Comput. Graph. For. 29, 3 (2010).Google ScholarGoogle Scholar
  78. Eric W. Weisstein. 2019. Monge Patch. From MathWorld--A Wolfram Web Resource. Retrieved from http://mathworld.wolfram.com/MongePatch.html.Google ScholarGoogle Scholar
  79. Roland Weitzenböck. 1885. Invariantentheorie. P. Noordhoff.Google ScholarGoogle Scholar
  80. YahooJAPAN. 2013. Plane. Retrieved from https://www.thingiverse.com/thing:182252.Google ScholarGoogle Scholar

Index Terms

  1. A Smoothness Energy without Boundary Distortion for Curved Surfaces

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 39, Issue 3
            June 2020
            179 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3388953
            Issue’s Table of Contents

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 18 March 2020
            • Revised: 1 January 2020
            • Accepted: 1 January 2020
            • Received: 1 May 2019
            Published in tog Volume 39, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format