skip to main content
research-article

Linear subspace design for real-time shape deformation

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We propose a method to design linear deformation subspaces, unifying linear blend skinning and generalized barycentric coordinates. Deformation subspaces cut down the time complexity of variational shape deformation methods and physics-based animation (reduced-order physics). Our subspaces feature many desirable properties: interpolation, smoothness, shape-awareness, locality, and both constant and linear precision. We achieve these by minimizing a quadratic deformation energy, built via a discrete Laplacian inducing linear precision on the domain boundary. Our main advantage is speed: subspace bases are solutions to a sparse linear system, computed interactively even for generously tessellated domains. Users may seamlessly switch between applying transformations at handles and editing the subspace by adding, removing or relocating control handles. The combination of fast computation and good properties means that designing the right subspace is now just as creative as manipulating handles. This paradigm shift in handle-based deformation opens new opportunities to explore the space of shape deformations.

Skip Supplemental Material Section

Supplemental Material

a57.mp4

mp4

19.1 MB

References

  1. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3, 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. on Graph. 24, 3 (Aug.), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28, 3, 34:1--34:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bobach, T., Hering-Bertram, M., and Umlauf, G. 2006. Comparison of voronoi based scattered data interpolation schemes. In Proceedings of International Conference on Visualization, Imaging and Image Processing, 342--349.Google ScholarGoogle Scholar
  5. Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on pattern analysis and machine intelligence 11, 6, 567--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Botsch, M., and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Botsch, M., and Kobbelt, L. 2005. Real-time shape editing using radial basis functions. Comput. Graph. Forum 24.Google ScholarGoogle Scholar
  8. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proc. SGP, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339--347.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (July), 38:1--38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Davis, T. A. 2006. Cholmod: a sparse supernodal Cholesky factorization and modification package, version 3.0. University of Florida.Google ScholarGoogle Scholar
  13. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 3, 209--218.Google ScholarGoogle ScholarCross RefCross Ref
  14. Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Finch, M., Snyder, J., and Hoppe, H. 2011. Freeform vector graphics with controlled thin-plate splines. ACM Trans. Graph. 30, 6, 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gilles, B., Bousquet, G., Faure, F., and Pai, D. 2011. Frame-based elastic models. ACM Trans. Graph. 30, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harmon, D., and Zorin, D. 2013. Subspace integration with local deformations. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proc. of Graphics Interface, 247--256.Google ScholarGoogle Scholar
  20. Hildebrandt, K., Schulz, C., Tycowicz, C. V., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hormann, K., and Sukumar, N. 2008. Maximum entropy coordinates for arbitrary polytopes. Comput. Graph. Forum 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jacobson, A., Tosun, E., Sorkine, O., and Zorin, D. 2010. Mixed finite elements for variational surface modeling. In Proc. SGP, 1565--1574.Google ScholarGoogle Scholar
  25. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1--78:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jacobson, A., Weinkauf, T., and Sorkine, O. 2012. Smooth shape-aware functions with controlled extrema. In Proc. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jacobson, A., Kavan, L.,, and Sorkine-Hornung, O. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM Trans. Graph. 32, 4, 33:1--33:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jacobson, A., Deng, Z., Kavan, L., and Lewis, J. 2014. Skinning: Real-time shape deformation. In ACM SIGGRAPH 2014 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jacobson, A. 2013. Algorithms and Interfaces for Real-Time Deformation of 2D and 3D Shapes. PhD thesis, ETH Zurich.Google ScholarGoogle Scholar
  31. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation With Graphics Hardware. ACM Trans. Graph. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kavan, L., Sloan, P., and O'Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2, 327--336.Google ScholarGoogle ScholarCross RefCross Ref
  35. Kavan, L., Gerszewski, D., Bargteil, A., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4, 93:1--93:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. for Numerical Methods in Engineering 51.Google ScholarGoogle Scholar
  37. Langer, T., and Seidel, H.-P. 2008. Higher order barycentric coordinates. Comput. Graph. Forum 27, 2, 459--466.Google ScholarGoogle ScholarCross RefCross Ref
  38. Li, X.-Y., and Hu, S.-M. 2013. Poisson coordinates.Google ScholarGoogle Scholar
  39. Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. SGP, 117--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Lipman, Y., Rustamov, R., and Funkhouser, T. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Graphics Interface, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (July), 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4, 1400--1423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24 (July), 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Neumann, T., Varanasi, K., Wenger, S., Wacker, M., Magnor, M., and Theobalt, C. 2013. Sparse localized deformation components. ACM Trans. Graph. 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Nieto, J. R., and Susin, A. 2013. Cage based deformations: a survey. In Deformation Models. Springer, 75--99.Google ScholarGoogle Scholar
  48. Ozolinš, V., Lai, R., Caflisch, R., and Osher, S. 2013. Compressed plane waves-compactly supported multiresolution basis for the laplace operator. Proc. of NAS.Google ScholarGoogle Scholar
  49. Sacht, L., Jacobson, A., Panozzo, D., Schüller, C., and Sorkine-Hornung, O. 2013. Consistent volumetric discretizations inside self-intersecting surfaces. vol. 32, 147--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. SIGGRAPH, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Sin, F. S., Schroeder, D., and Barbič, J. 2013. Vega: Non-linear fem deformable object simulator. In Computer Graphics Forum, vol. 32, Wiley Online Library, 36--48.Google ScholarGoogle Scholar
  52. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. SMI, 191--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. SGP, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Vallet, B., and Lévy, B. 2008. Spectral geometry processing with manifold harmonics. In Computer Graphics Forum, vol. 27, Wiley Online Library, 251--260.Google ScholarGoogle Scholar
  56. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proc. SCA, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete Laplace operators: no free lunch. In Proc. SGP, 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Weber, O., Ben-Chen, M., Gotsman, C., and Hormann, K. 2011. A complex view of barycentric mappings. Comput. Graph. Forum 30, 5.Google ScholarGoogle ScholarCross RefCross Ref
  59. Xu, H., and Barbič, J. 2014. Signed distance fields for polygon soup meshes. Graphics Interface 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Xu, K., Zhang, H., Cohen-Or, D., and Xiong, Y. 2009. Dynamic harmonic fields for surface processing. Computers & Graphics 33, 3, 391--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Zhang, J., Deng, B., Liu, Z., Patanè, G., Bouaziz, S., Hormann, K., and Liu, L. 2014. Local barycentric coordinates. ACM Trans. Graph. 33. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Linear subspace design for real-time shape deformation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 4
      August 2015
      1307 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2809654
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2015
      Published in tog Volume 34, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader