skip to main content
research-article

Non-smooth Newton Methods for Deformable Multi-body Dynamics

Published:21 October 2019Publication History
Skip Abstract Section

Abstract

We present a framework for the simulation of rigid and deformable bodies in the presence of contact and friction. Our method is based on a non-smooth Newton iteration that solves the underlying nonlinear complementarity problems (NCPs) directly. This approach allows us to support nonlinear dynamics models, including hyperelastic deformable bodies and articulated rigid mechanisms, coupled through a smooth isotropic friction model. The fixed-point nature of our method means it requires only the solution of a symmetric linear system as a building block. We propose a new complementarity preconditioner for NCP functions that improves convergence, and we develop an efficient GPU-based solver based on the conjugate residual (CR) method that is suitable for interactive simulations. We show how to improve robustness using a new geometric stiffness approximation and evaluate our method’s performance on a number of robotics simulation scenarios, including dexterous manipulation and training using reinforcement learning.

Skip Supplemental Material Section

Supplemental Material

References

  1. Vincent Acary and Bernard Brogliato. 2008. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  2. Pierre Alart. 1997. Méthode de Newton généralisée en mécanique du contact. J. Afric. Math. Appl. 76 (1997), 83--108.Google ScholarGoogle Scholar
  3. Pierre Alart and Alain Curnier. 1991. A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 3 (1991), 353--375.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Sheldon Andrews, Marek Teichmann, and Paul G. Kry. 2017. Geometric stiffness for real-time constrained multibody dynamics. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 235--246.Google ScholarGoogle Scholar
  5. Mihai Anitescu and Gary D. Hart. 2004. A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Internat. J. Numer. Methods Engrg. 60, 14 (2004), 2335--2371.Google ScholarGoogle ScholarCross RefCross Ref
  6. Uri M. Ascher, Hongsheng Chin, Linda R. Petzold, and Sebastian Reich. 1995. Stabilization of constrained mechanical systems with DAEs and invariant manifolds. J. Struct. Mech. 23, 2 (1995), 135--157.Google ScholarGoogle ScholarCross RefCross Ref
  7. Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin. 2014. A survey on position-based simulation methods in computer graphics. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 228--251.Google ScholarGoogle Scholar
  8. Michele Benzi, Gene H. Golub, and Jörg Liesen. 2005. Numerical solution of saddle point problems. Acta Numerica 14 (2005), 1--137.Google ScholarGoogle ScholarCross RefCross Ref
  9. Florence Bertails-Descoubes, Florent Cadoux, Gilles Daviet, and Vincent Acary. 2011. A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Trans. Graph. 30, 1 (2011), 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (2014), 154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Stephen P. Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Charles G. Broyden. 1965. A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 92 (1965), 577--593.Google ScholarGoogle ScholarCross RefCross Ref
  13. Frank H. Clarke. 1990. Optimization and Nonsmooth Analysis. Vol. 5. Siam.Google ScholarGoogle Scholar
  14. Michael B. Cline and Dinesh K. Pai. 2003. Post-stabilization for rigid body simulation with contact and constraints. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’03), Vol. 3. IEEE, 3744--3751.Google ScholarGoogle Scholar
  15. Richard W. Cottle. 2008. Linear complementarity problem. In Encyclopedia of Optimization. Springer, 1873--1878.Google ScholarGoogle Scholar
  16. Erwin Coumans. 2015. Bullet physics simulation. In Proceedings of the ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM, New York, NY, Article 7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Alain Curnier and Pierre Alart. 1988. A generalized Newton method for contact problems with friction. Journal de mécanique théorique et appliquée 7, suppl. 1 (1988), 67--82. http://infoscience.epfl.ch/record/54198.Google ScholarGoogle Scholar
  18. Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. In ACM Transactions on Graphics, Vol. 30. ACM, 139.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Steven P. Dirkse and Michael C. Ferris. 1995. The path solver: A nommonotone stabilization scheme for mixed complementarity problems. Optimiz. Methods Softw. 5, 2 (1995), 123--156.Google ScholarGoogle ScholarCross RefCross Ref
  20. Christian Duriez. 2013. Control of elastic soft robots based on real-time finite element method. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’13). IEEE, 3982--3987.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kenny Erleben. 2013. Numerical methods for linear complementarity problems in physics-based animation. In Proceedings of the ACM SIGGRAPH 2013 Courses. ACM, 8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kenny Erleben. 2017. Rigid body contact problems using proximal operators. In Proceedings of the ACM Symposium on Computer Animation. 13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Michael C. Ferris and Todd S. Munson. 2000. Complementarity Problems in GAMS and the PATH Solver1. J. Econ. Dynam. Control 24, 2 (2000), 165--188.Google ScholarGoogle ScholarCross RefCross Ref
  24. Andreas Fischer. 1992. A special Newton-type optimization method. Optimization 24, 3--4 (1992), 269--284.Google ScholarGoogle ScholarCross RefCross Ref
  25. David Chin-Lung Fong and Michael Saunders. 2012. CG versus MINRES: An empirical comparison. Sultan Qaboos Univ. J. Sci. 17, 1 (2012), 44--62.Google ScholarGoogle ScholarCross RefCross Ref
  26. Mihai Frâncu and Florica Moldoveanu. 2015. Virtual try on systems for clothes: Issues and solutions. UPB Sci. Bull., Ser. C 77, 4 (2015), 31--44.Google ScholarGoogle Scholar
  27. Masao Fukushima, Zhi-Quan Luo, and Paul Tseng. 2002. Smoothing functions for second-order-cone complementarity problems. SIAM J. Optimiz. 12, 2 (2002), 436--460.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. 2017. Emergence of locomotion behaviours in rich environments. arXiv:1707.02286.Google ScholarGoogle Scholar
  29. Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of Conjugate Gradients for Solving Linear Systems. Vol. 49. NBS Washington, DC.Google ScholarGoogle Scholar
  30. Michael Hintermüller. 2010. Semismooth Newton methods and applications. (2010).Google ScholarGoogle Scholar
  31. Filip Ilievski, Aaron D. Mazzeo, Robert F. Shepherd, Xin Chen, and George M. Whitesides. 2011. Soft robotics for chemists. Angewandte Chemie 123, 8 (2011), 1930--1935.Google ScholarGoogle ScholarCross RefCross Ref
  32. Michel Jean. 1999. The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 3--4 (1999), 235--257.Google ScholarGoogle ScholarCross RefCross Ref
  33. Michel Jean and Jean Jacques Moreau. 1992. Unilaterality and dry friction in the dynamics of rigid body collections. 1st Contact Mechanics International Symposium. 31--48. https://hal.archives-ouvertes.fr/hal-01863710.Google ScholarGoogle Scholar
  34. Franck Jourdan, Pierre Alart, and Michel Jean. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Comput. Methods Appl. Mech. Eng. 155, 1--2 (1998), 31--47.Google ScholarGoogle ScholarCross RefCross Ref
  35. Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered projections for frictional contact in multibody systems. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 164.Google ScholarGoogle Scholar
  36. Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun. 2014. Adaptive nonlinearity for collisions in complex rod assemblies. ACM Trans. Graph. 33, 4 (2014), 123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Cornelius Lanczos. 1970. The Variational Principles of Mechanics. Vol. 4. Courier Corporation.Google ScholarGoogle Scholar
  38. Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. 2018. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37, 4--5 (2018), 421--436.Google ScholarGoogle ScholarCross RefCross Ref
  39. Yanmei Li and Imin Kao. 2001. A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’01), Vol. 3. IEEE, 3055--3060.Google ScholarGoogle Scholar
  40. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2016. Towards real-time simulation of hyperelastic materials. arXiv preprint arXiv:1604.07378.Google ScholarGoogle Scholar
  41. Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-based simulation of compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games. ACM, 49--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. 2017. Dex-Net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. CoRR abs/1703.09312. http://arxiv.org/abs/1703.09312.Google ScholarGoogle Scholar
  43. Nicholas Maratos. 1978. Exact Penalty Function Algorithms for Finite Dimensional and Control Optimization Problems. Ph.D. Dissertation. Imperial College London (University of London).Google ScholarGoogle Scholar
  44. Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. 2015. Using Nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph. 34, 3 (2015), 32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. 2001. The semismooth algorithm for large scale complementarity problems. INFORMS J. Comput. 13 (2001), 294--311.Google ScholarGoogle ScholarCross RefCross Ref
  46. Sarah Niebe and Kenny Erleben. 2015. Numerical methods for linear complementarity problems in physics-based animation. Synth. Lect. Comput. Graph. Animat. 7, 1 (2015), 1--159.Google ScholarGoogle Scholar
  47. Jorge Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 151 (1980), 773--782.Google ScholarGoogle ScholarCross RefCross Ref
  48. Jorge Nocedal and Stephen Wright. 2006. Numerical Optimization. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  49. OpenAI. 2017. Roboschool. Retrieevd from https://github.com/openai/roboschool.Google ScholarGoogle Scholar
  50. Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit contact handling for deformable objects. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 559--568.Google ScholarGoogle Scholar
  51. Jong-Shi Pang. 1990. Newton’s method for B-differentiable equations. Math. Operat. Res. 15, 2 (1990), 311--341.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Alvaro G. Perez, Gabriel Cirio, Fernando Hernandez, Carlos Garre, and Miguel A. Otaduy. 2013. Strain limiting for soft finger contact simulation. In Proceedings of the World Haptics Conference (WHC’13). IEEE, 79--84.Google ScholarGoogle Scholar
  53. Liqun Qi and Jie Sun. 1993. A nonsmooth version of Newton’s method. Math. Program. 58, 1--3 (1993), 353--367.Google ScholarGoogle ScholarCross RefCross Ref
  54. Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems. Vol. 82. SIAM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine. 2017. Sim2real view invariant visual servoing by recurrent control. arXiv:1712.07642.Google ScholarGoogle Scholar
  56. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.Google ScholarGoogle Scholar
  57. Martin Servin, Claude Lacoursiere, and Niklas Melin. 2006. Interactive simulation of elastic deformable materials. In Proceedings of the SIGRAD Conference. 22--32.Google ScholarGoogle Scholar
  58. Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 95--103.Google ScholarGoogle Scholar
  59. Morten Silcowitz, Sarah Niebe, and Kenny Erleben. 2009. Nonsmooth newton method for fischer function reformulation of contact force problems for interactive rigid body simulation. In Proceedings of 6th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS'09). 105--114.Google ScholarGoogle Scholar
  60. Morten Silcowitz-Hansen, Sarah Niebe, and Kenny Erleben. 2010. A nonsmooth nonlinear conjugate gradient method for interactive contact force problems. Visual Comput. 26, 6--8 (2010), 893--901.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean flesh simulation. ACM Trans. Graph. 37, 2 (2018), 12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2012. Reflections on simultaneous impact. ACM Trans. Graph. 31, 4 (2012), 106.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. David Stewart and Jeffrey C. Trinkle. 2000. An implicit time-stepping scheme for rigid body dynamics with coulomb friction. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’00), Vol. 1. IEEE, 162--169.Google ScholarGoogle Scholar
  64. David E. Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM Rev. 42, 1 (2000), 3--39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. David E. Stewart and Jeffrey C. Trinkle. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Methods Eng. 39, 15 (1996), 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  66. Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent Vanhoucke. 2018. Sim-to-Real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332.Google ScholarGoogle Scholar
  67. Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 181--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Françoise Tisseur. 2001. Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 4 (2001), 1038--1057.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Emanuel Todorov. 2010. Implicit nonlinear complementarity: A new approach to contact dynamics. In IEEE International Conference on Robotics and Automation (ICRA’10). IEEE, 2322--2329.Google ScholarGoogle ScholarCross RefCross Ref
  70. Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4 (July 2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable constrained dynamics. ACM Trans. Graph. 34, 4 (2015), 132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Ernst Hairer and Gerhard Wanner. 2010. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Vol. 14. Springer.Google ScholarGoogle Scholar
  73. Jedediyah Williams, Ying Lu, and J. C. Trinkle. 2017. A geometrically exact contact model for polytopes in multirigid-body simulation. J. Comput. Nonlin. Dynam. 12, 2 (2017), 021001.Google ScholarGoogle ScholarCross RefCross Ref
  74. Changxi Zheng and Doug L. James. 2011. Toward high-quality modal contact sound. ACM Trans. Graph. 30, 4 (Aug. 2011).Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Non-smooth Newton Methods for Deformable Multi-body Dynamics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 5
          October 2019
          191 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3341165
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 October 2019
          • Revised: 1 May 2019
          • Accepted: 1 May 2019
          • Received: 1 August 2018
          Published in tog Volume 38, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format