skip to main content
research-article

Stable constrained dynamics

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We present a unification of the two main approaches to simulate deformable solids, namely elasticity and constraints. Elasticity accurately handles soft to moderately stiff objects, but becomes numerically hard as stiffness increases. Constraints efficiently handle high stiffness, but when integrated in time they can suffer from instabilities in the nullspace directions, generating spurious transverse vibrations when pulling hard on thin inextensible objects or articulated rigid bodies. We show that geometric stiffness, the tensor encoding the change of force directions (as opposed to intensities) in response to a change of positions, is the missing piece between the two approaches. This previously neglected stiffness term is easy to implement and dramatically improves the stability of inextensible objects and articulated chains, without adding artificial bending forces. This allows time step increases up to several orders of magnitude using standard linear solvers.

Skip Supplemental Material Section

Supplemental Material

a132.mp4

mp4

15.7 MB

References

  1. Anitescu, M., and Hart, G. D. 2004. A fixed-point iteration approach for multibody dynamics with contact and small friction. Mathematical Programming 101.Google ScholarGoogle Scholar
  2. Ascher, U. M., H. Chin, L. R. Petzold, and Reich, S. 1995. Stabilization of Constrained Mechanical Systems with DAEs and Invariant Manifold. Journal of Mechanics of Structures and Machines 23.Google ScholarGoogle ScholarCross RefCross Ref
  3. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. 25th annual conference on Computer graphics and interactive techniques (ACM SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baraff, D. 1996. Linear-time Dynamics Using Lagrange Multipliers. In Proc. 23th annual conference on Computer graphics and interactive techniques (ACM SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barzel, R., and Barr, A. H. 1988. A Modeling System Based On Dynamic Constraints. In Computer Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bender, J., Müller, M., Otaduy, M. A., and Teschner, M. 2013. Position-based Methods for the Simulation of Solid Objects in Computer Graphics. In Computer Graphics Forum (Eurographics State of the Art Report).Google ScholarGoogle Scholar
  7. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for Predicting the Dynamics of Natural Hair. In ACM Transactions on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Transactions on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cline, M. B., and Pai, D. K. 2003. Post-stabilization for rigid body simulation with contact and constraints. In International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  10. Cook, R. D. 1995. Finite Element Modeling for Stress Analysis. JohnWiley & Sons, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Duriez, C., Dubois, F., Kheddar, A., and Andriot, C. 2008. Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments. CoRR.Google ScholarGoogle Scholar
  12. Erleben, K. 2013. Numerical Methods for Linear Complementarity Problems in Physics-based Animation. In ACM SIGGRAPH Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., and Cotin, S. 2012. SOFA: A Multi-Model Framework for Interactive Physical Simulation. In Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Springer. http://www.sofa-framework.org.Google ScholarGoogle Scholar
  14. Featherstone, R. 1987. Robot Dynamics Algorithm. Kluwer Academic Publishers, Norwell, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. García-Fernández, I., Pla-Castells, M., and Martínez-Durá, R. J. 2008. Elevation Cable Modeling for Interactive Simulation of Cranes. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gascuel, J.-d., and Gascuel, M.-P. 1994. Displacement constraints for interactive modeling and animation of articulated structures. Visual Computer 10, 4.Google ScholarGoogle ScholarCross RefCross Ref
  17. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient Simulation of Inextensible Cloth. ACM Transactions on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Transactions on Graphics (Proc. SIGGRAPH Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kaufman, D. M., Tamstorf, R., Smith, B., Aubry, J.- M., and Grinspun, E. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Transaction on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lacoursière, C. 2007. Ghosts and machines: regularized variational methods for interactive simulations of multibodies with dry frictional contacts. PhD thesis, Umeå University.Google ScholarGoogle Scholar
  22. Macklin, M., Müller, M., Chentanez, N., and Kim, T.- Y. 2014. Unified Particle Physics for Real-Time Applications. ACM Transactions on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mirtich, B. 1996. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis, University of California. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2006. Position Based Dynamics. Proc. VRIPhys.Google ScholarGoogle Scholar
  25. Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Transactions on Graphics (Proc. SIGGRAPH Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum (Eurographics State of the Art Report).Google ScholarGoogle Scholar
  27. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization (2nd ed.). Springer-Verlag.Google ScholarGoogle Scholar
  28. Otaduy, M. A., Tamstorf, R., Steinemann, D., and Gross, M. 2009. Implicit Contact Handling for Deformable Objects. Computer Graphics Forum (Proc. of Eurographics).Google ScholarGoogle Scholar
  29. Papadopoulo, T., and Lourakis, M. I. A. 2000. Estimating the jacobian of the singular value decomposition: Theory and applications. In Proc. European Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Proc. Graphics Interface.Google ScholarGoogle Scholar
  31. Servin, M., and Lacoursière, C. 2008. Rigid Body Cable for Virtual Environments. IEEE Transactions on Visualization and Computer Graphics 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Servin, M., Lacoursière, C., and Melin, N. 2006. Interactive simulation of elastic deformable materials. In Proc. SIGRAD.Google ScholarGoogle Scholar
  33. Servin, M., Lacoursière, C., Nordfelth, F., and Bodin, K. 2011. Hybrid, Multiresolution Wires with Massless Frictional Contacts. IEEE Trans. on Visualization and Computer Graphics 17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid Simulation of Deformable Solids. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sueda, S., Jones, G. L., Levin, D. I. W., and Pai, D. K. 2011. Large-scale Dynamic Simulation of Highly Constrained Strands. In ACM Transactions on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thomaszewski, B., Pabst, S., and Strasser, W. 2009. Continuum-based Strain Limiting. Computer Graphics Forum (Proc. Eurographics).Google ScholarGoogle Scholar
  38. Tomcin, R., Sibbing, D., and Kobbelt, L. 2014. Efficient enforcement of hard articulation constraints in the presence of closed loops and contacts. Computer Graphics Forum (Proc. Eurographics). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, H., O'brien, J. F., and Ramamoorthi, R. 2010. Multi-Resolution Isotropic Strain Limiting. ACM Transactions on Graphics (Proc. SIGGRAPH Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Weinstein, R., Teran, J., and Fedkiw, R. 2006. Dynamic simulation of articulated rigid bodies with contact and collision. IEEE Transactions on Visualization and Computer Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Witkin, A. 1997. Physically Based Modeling: Principles and Practice -- Constrained Dynamics. Computer Graphics.Google ScholarGoogle Scholar
  42. Zheng, C., and James, D. L. 2011. Toward High-Quality Modal Contact Sound. ACM Transactions on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zienkiewicz, O. C., and Taylor, R. L. 2000. The Finite Element Method: Solid Mechanics, 5 ed., vol. 2. Butterworth-Heinemann.Google ScholarGoogle Scholar

Index Terms

  1. Stable constrained dynamics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 4
          August 2015
          1307 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2809654
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2015
          Published in tog Volume 34, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader