skip to main content
research-article

A Unified Framework for Compression and Compressed Sensing of Light Fields and Light Field Videos

Published:17 May 2019Publication History
Skip Abstract Section

Abstract

In this article we present a novel dictionary learning framework designed for compression and sampling of light fields and light field videos. Unlike previous methods, where a single dictionary with one-dimensional atoms is learned, we propose to train a Multidimensional Dictionary Ensemble (MDE). It is shown that learning an ensemble in the native dimensionality of the data promotes sparsity, hence increasing the compression ratio and sampling efficiency. To make maximum use of correlations within the light field data sets, we also introduce a novel nonlocal pre-clustering approach that constructs an Aggregate MDE (AMDE). The pre-clustering not only improves the image quality but also reduces the training time by an order of magnitude in most cases. The decoding algorithm supports efficient local reconstruction of the compressed data, which enables efficient real-time playback of high-resolution light field videos. Moreover, we discuss the application of AMDE for compressed sensing. A theoretical analysis is presented that indicates the required conditions for exact recovery of point-sampled light fields that are sparse under AMDE. The analysis provides guidelines for designing efficient compressive light field cameras. We use various synthetic and natural light field and light field video data sets to demonstrate the utility of our approach in comparison with the state-of-the-art learning-based dictionaries, as well as established analytical dictionaries.

Skip Supplemental Material Section

Supplemental Material

References

  1. Edward H. Adelson and James R. Bergen. 1991. The plenoptic function and the elements of early vision. In Computational Models of Visual Processing. MIT Press, 3--20.Google ScholarGoogle Scholar
  2. M. Aharon, M. Elad, and A. Bruckstein. 2006. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Proc. 54, 11 (Nov. 2006), 4311--4322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. H. Arguello and G. R. Arce. 2014. Colored coded aperture design by concentration of measure in compressive spectral imaging. IEEE Trans. Image Proc. 23, 4 (Apr. 2014), 1896--1908. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amit Ashok and Mark A. Neifeld. 2010. Compressive light field imaging. SPIE Proceedings 7690 (2010), 1--12.Google ScholarGoogle Scholar
  5. S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos. 2012. Compressive light field sensing. IEEE Trans. Image Proc. 21, 12 (Dec. 2012), 4746--4757. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Ballester-Ripoll and R. Pajarola. 2016. Compressing bidirectional texture functions via tensor train decomposition. In Proceedings of the 24<sup>th</sup> Pacific Conference on Computer Graphics and Applications: Short Papers. Eurographics Association, Goslar Germany, Germany, 19--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Zvika Ben-Haim, Yonina C. Eldar, and Michael Elad. 2010. Coherence-based performance guarantees for estimating a sparse vector under random noise. Trans. Sig. Proc. 58, 10 (Oct. 2010), 5030--5043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ahmet Bilgili, Aydn Öztürk, and Murat Kurt. 2011. A general BRDF representation based on tensor decomposition. Comput. Graph. Forum 30, 8 (2011), 2427--2439.Google ScholarGoogle ScholarCross RefCross Ref
  9. Ori Bryt and Michael Elad. 2008. Compression of facial images using the K-SVD algorithm. J. Vis. Comun. Image Represent. 19, 4 (2008), 270--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. J. Candès, J. Romberg, and T. Tao. 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theor. 52, 2 (Feb. 2006), 489--509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. E. J. Candès, J. K. Romberg, and T. Tao. 2006. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 8 (2006), 1207--1223.Google ScholarGoogle ScholarCross RefCross Ref
  12. E. J. Candès and T. Tao. 2005. Decoding by linear programming. IEEE Trans. Inform. Theor. 51, 12 (Dec. 2005), 4203--4215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. J. Candès and T. Tao. 2006. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theor. 52, 12 (Dec. 2006), 5406--5425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. J. Candès and M. B. Wakin. 2008. An introduction to compressive sampling. IEEE Sig. Proc. Mag. 25, 2 (March 2008), 21--30.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. H. Chang and J. Y. Wu. 2014. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit. IEEE Trans. Inform. Theor. 60, 9 (Sept. 2014), 5702--5715.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Choudhury, R. Swanson, F. Heide, G. Wetzstein, and W. Heidrich. 2017. Consensus convolutional sparse coding. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’17). 4290--4298.Google ScholarGoogle Scholar
  17. A. Cohen, Ingrid Daubechies, and J.-C. Feauveau. 1992. Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 5 (June 1992), 485--560.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1 (Jan. 1999), 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. L. Donoho. 2006. Compressed sensing. IEEE Trans. Inform. Theor. 52, 4 (Apr. 2006), 1289--1306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. David L. Donoho and Michael Elad. 2003. Optimally sparse representation in general (nonorthogonal) dictionaries via &ell;<sub>1</sub> minimization. In Proceedings of the National Academy of Sciences 100, 5 (2003), 2197--2202.Google ScholarGoogle ScholarCross RefCross Ref
  21. P. L. Dragotti and Y. M. Lu. 2014. On sparse representation in Fourier and local bases. IEEE Trans. Inform. Theor. 60, 12 (Dec. 2014), 7888--7899.Google ScholarGoogle ScholarCross RefCross Ref
  22. Michael Elad. 2010. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (1st ed.). Springer-Verlag New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Elad and M. Aharon. 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Proc. 15, 12 (Dec. 2006), 3736--3745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Y. C. Eldar, P. Kuppinger, and H. Bolcskei. 2010. Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Sig. Proc. 58, 6 (2010), 3042--3054. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. E. Elhamifar and R. Vidal. 2013. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 11 (Nov. 2013), 2765--2781. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Walter D. Fisher. 1958. On grouping for maximum homogeneity. J. Amer. Statist. Assoc. 53, 284 (1958), 789--798.Google ScholarGoogle ScholarCross RefCross Ref
  27. Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The Lumigraph. In Proceedings of the 23<sup>rd</sup> Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’96). ACM, New York, NY, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Gribonval and M. Nielsen. 2003. Sparse representations in unions of bases. IEEE Trans. Inform. Theor. 49, 12 (Dec. 2003), 3320--3325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. K. S. Gurumoorthy, A. Rajwade, A. Banerjee, and A. Rangarajan. 2010. A method for compact image representation using sparse matrix and tensor projections onto exemplar orthonormal bases. IEEE Trans. Image Proc. 19, 2 (2010), 322--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Michael Guthe, Gero Müller, Martin Schneider, and Reinhard Klein. 2009. BTF-CIELab: A perceptual difference measure for quality assessment and compression of BTFs. Comput. Graphics Forum 28, 1 (2009), 101--113.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. A. Horn and C. R. Johnson. 2012. Matrix Analysis. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. David A. Huffman. 1952. A method for the construction of minimum-redundancy codes. Proceedings of the IRE 40, 9 (Sept. 1952), 1098--1101.Google ScholarGoogle ScholarCross RefCross Ref
  33. Adrian Jarabo, Belen Masia, Adrien Bousseau, Fabio Pellacini, and Diego Gutierrez. 2014. How do people edit light fields? ACM Trans. Graph. 33, 4, Article 146 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Jones, K. Nagano, J. Busch, X. Yu, H. Y. Peng, J. Barreto, O. Alexander, M. Bolas, P. Debevec, and J. Unger. 2016. Time-offset conversations on a life-sized automultiscopic projector array. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’16). IEEE, 927--935.Google ScholarGoogle Scholar
  35. Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-based view synthesis for light field cameras. ACM Trans. Graph. 35, 6, Article 193 (Nov. 2016), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Mahdad Hosseini Kamal, Barmak Heshmat, Ramesh Raskar, Pierre Vandergheynst, and Gordon Wetzstein. 2016. Tensor low-rank and sparse light field photography. Comput. Vis. Image Und. 145 (2016), 172--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. David Kittle, Kerkil Choi, Ashwin Wagadarikar, and David J. Brady. 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Appl. Opt. 49, 36 (Dec. 2010), 6824--6833.Google ScholarGoogle ScholarCross RefCross Ref
  38. Seungjae Lee, Changwon Jang, Seokil Moon, Jaebum Cho, and Byoungho Lee. 2016. Additive light field displays: Realization of augmented reality with holographic optical elements. ACM Trans. Graph. 35, 4, Article 60 (July 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of the 23<sup>rd</sup> Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’96). ACM, New York, NY, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, and John Snyder. 2004. All-frequency precomputed radiance transfer for glossy objects. In Proceedings of the Eurographics Conference on Rendering Techniques (EGSR’04). Eurographics Association, 337--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. S. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theor. 28, 2 (1982), 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Dhruv Mahajan, Ira Kemelmacher Shlizerman, Ravi Ramamoorthi, and Peter Belhumeur. 2007. A theory of locally low dimensional light transport. ACM Trans. Graph. 26, 3 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Andrew Maimone, Gordon Wetzstein, Matthew Hirsch, Douglas Lanman, Ramesh Raskar, and Henry Fuchs. 2013. Focus 3D: Compressive accommodation display. ACM Trans. Graph. 32, 5, Article 153 (Oct. 2013), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. 2009. Non-local sparse models for image restoration. In Proceedings of the 12th IEEE International Conference on Computer Vision. IEEE, 2272--2279.Google ScholarGoogle Scholar
  45. S. Mallat. 2008. A Wavelet Tour of Signal Processing: The Sparse Way. Elsevier Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Kshitij Marwah, Gordon Wetzstein, Yosuke Bando, and Ramesh Raskar. 2013. Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. 32, 4, Article 46 (July 2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ehsan Miandji. 2018. Sparse Representation of Visual Data for Compression and Compressed Sensing. Ph.D. Dissertation. Department of Science and Technology, Linköping University, Sweden.Google ScholarGoogle Scholar
  48. Ehsan Miandji, Mohammad Emadi, Jonas Unger, and Ehsan Afshari. 2017. On probability of support recovery for orthogonal matching pursuit using mutual coherence. IEEE Sig. Proc. Lett. 24, 11 (Nov. 2017), 1646--1650.Google ScholarGoogle ScholarCross RefCross Ref
  49. Ehsan Miandji, Joel Kronander, and Jonas Unger. 2013. Learning based compression of surface light fields for real-time rendering of global illumination scenes. In SIGGRAPH Asia 2013 Technical Briefs (SA’13). ACM, New York, NY, Article 24, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ehsan Miandji, Joel Kronander, and Jonas Unger. 2015. Compressive image reconstruction in reduced union of subspaces. Comput. Graph. Forum 34, 2 (May 2015), 33--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ehsan Miandji, Jonas Unger, and Christine Guillemot. 2018. Multi-shot single sensor light field camera using a color coded mask. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO’18). 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  52. H. Mohimani, Massoud Babaie-Zadeh, and C. Jutten. 2009. A fast approach for overcomplete sparse decomposition based on smoothed &ell;<sub>0</sub> norm. IEEE Trans. Sig. Proc. 57, 1 (2009), 289--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Gero Müller, Jan Meseth, Mirko Sattler, Ralf Sarlette, and Reinhard Klein. 2005. Acquisition, synthesis, and rendering of bidirectional texture functions. Computer Graphics Forum 24, 1 (Mar. 2005), 83--109.Google ScholarGoogle ScholarCross RefCross Ref
  54. Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan. 2005. Light field photography with a hand-held plenoptic camera. Comput. Sci. Tech. Rep. 2, 11 (2005), 1--11.Google ScholarGoogle Scholar
  55. H. Nyquist. 1928. Certain topics in telegraph transmission theory. Trans. Amer. Inst. Elect. Eng. 47, 2 (Apr. 1928), 617--644.Google ScholarGoogle ScholarCross RefCross Ref
  56. Renato Pajarola, Susanne K. Suter, and Roland Ruiters. 2013. Tensor approximation in visualization and computer graphics. In Eurographics 2013—Tutorials. Eurographics Association, Girona, Spain.Google ScholarGoogle Scholar
  57. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. 1993. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, Vol. 1. IEEE, 40--44.Google ScholarGoogle Scholar
  58. M. Rahmani and G. K. Atia. 2017. Coherence pursuit: Fast, simple, and robust principal component analysis. IEEE Trans. Sig. Proc. 65, 23 (Dec. 2017), 6260--6275.Google ScholarGoogle ScholarCross RefCross Ref
  59. Ruiters Roland and Klein Reinhard. 2009. BTF compression via sparse tensor decomposition. Comput. Graph. Forum 28, 4 (2009), 1181--1188.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. R. Rubinstein, M. Zibulevsky, and M. Elad. 2010. Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Trans. Sig. Proc. 58, 3 (2010), 1553--1564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Neus Sabater, Guillaume Boisson, Benoit Vandame, Paul Kerbiriou, Frederic Babon, Matthieu Hog, Tristan Langlois, Remy Gendrot, Olivier Bureller, Arno Schubert, and Valerie Allie. 2017. Dataset and pipeline for multi-view light-field video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 1743--1753.Google ScholarGoogle ScholarCross RefCross Ref
  62. Peter H. Schönemann. 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika 31, 1 (1966), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  63. Kai Schröder, Reinhard Klein, and Arno Zinke. 2013. Non-local image reconstruction for efficient computation of synthetic bidirectional texture functions. Comput. Graph. Forum 32 (2013), 61--71.Google ScholarGoogle ScholarCross RefCross Ref
  64. C. E. Shannon. 1949. Communication in the presence of noise. Proceedings of the IRE 37, 1 (Jan. 1949), 10--21.Google ScholarGoogle ScholarCross RefCross Ref
  65. Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. 2003. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3 (2003), 382--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3 (July 2002), 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Mahdi Soltanolkotabi, Emmanuel J. Candès, et al. 2012. A geometric analysis of subspace clustering with outliers. Ann. Statist. 40, 4 (2012), 2195--2238.Google ScholarGoogle ScholarCross RefCross Ref
  68. David Taubman and Michael Marcellin. 2013. JPEG2000 Image Compression Fundamentals, Standards and Practice. Springer Publishing Company, Incorporated. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. J. A. Tropp. 2004. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theor. 50, 10 (Oct. 2004), 2231--2242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Yu-Ting Tsai. 2015. Multiway K-clustered tensor approximation: Toward high-performance photorealistic data-driven rendering. ACM Trans. Graph. 34, 5, Article 157 (Nov. 2015), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Yu-Ting Tsai and Zen-Chung Shih. 2012. K-clustered tensor approximation: A sparse multilinear model for real-time rendering. ACM Trans. Graph. 31, 3, Article 19 (June 2012), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Vaibhav Vaish, Marc Levoy, Richard Szeliski, C. L. Zitnick, and Sing Bing Kang. 2006. Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2331--2338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. M. Alex O. Vasilescu and Demetri Terzopoulos. 2004. TensorTextures: Multilinear image-based rendering. ACM Trans. Graph. 23, 3 (Aug. 2004), 336--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Hongcheng Wang, Qing Wu, Lin Shi, Yizhou Yu, and Narendra Ahuja. 2005. Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Trans. Graph. 24, 3 (July 2005), 527--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Y. Wang, F. Liu, K. Zhang, G. Hou, Z. Sun, and T. Tan. 2018. LFNet: A novel bidirectional recurrent convolutional neural network for light-field image super-resolution. IEEE Trans. Image Proc. 27, 9 (Sept. 2018), 4274--4286.Google ScholarGoogle ScholarCross RefCross Ref
  76. Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Proc. 13, 4 (April 2004), 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Gordon Wetzstein, Douglas Lanman, Matthew Hirsch, Wolfgang Heidrich, and Ramesh Raskar. 2012b. Compressive light field displays. IEEE Comput. Graph. Applicat. 32, 5 (2012), 6--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Gordon Wetzstein, Douglas Lanman, Matthew Hirsch, and Ramesh Raskar. 2012a. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 4, Article 80 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu. 2017a. Light field image processing: An overview. IEEE J. Select. Topics Sig. Proc. 11, 7 (Oct. 2017), 926--954.Google ScholarGoogle ScholarCross RefCross Ref
  80. G. Wu, M. Zhao, L. Wang, Q. Dai, T. Chai, and Y. Liu. 2017b. Light field reconstruction using deep convolutional network on EPI. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 1638--1646.Google ScholarGoogle Scholar
  81. H. Xu, C. Caramanis, and S. Mannor. 2013. Outlier-robust PCA: The high-dimensional case. IEEE Trans. Inform. Theor. 59, 1 (Jan. 2013), 546--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Y. Yoon, H. Jeon, D. Yoo, J. Lee, and I. S. Kweon. 2015. Learning a deep convolutional network for light-field image super-resolution. In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW’15). 57--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Y. Yoon, H. Jeon, D. Yoo, J. Lee, and I. S. Kweon. 2017. Light-field image super-resolution using convolutional neural network. IEEE Sig. Proc. Lett. 24, 6 (June 2017), 848--852.Google ScholarGoogle ScholarCross RefCross Ref
  84. J. Zepeda, C. Guillemot, and E. Kijak. 2011. Image compression using sparse representations and the iteration-tuned and aligned dictionary. IEEE J. Select. Topics Sig. Proc. 5, 5 (Sept. 2011), 1061--1073.Google ScholarGoogle Scholar
  85. Richard Zhang, Phillip Isola, Alexei Efros, Eli Shechtman, and Oliver Wang. 2018. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18). 586--595.Google ScholarGoogle ScholarCross RefCross Ref
  86. Zhiming Zhou, Guojun Chen, Yue Dong, David Wipf, Yong Yu, John Snyder, and Xin Tong. 2016. Sparse-as-possible SVBRDF acquisition. ACM Trans. Graph. 35, 6, Article 189 (Nov. 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Unified Framework for Compression and Compressed Sensing of Light Fields and Light Field Videos

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 3
        June 2019
        125 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3322934
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 May 2019
        • Revised: 1 March 2019
        • Accepted: 1 March 2019
        • Received: 1 May 2018
        Published in tog Volume 38, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format