skip to main content
research-article

Focus 3D: Compressive accommodation display

Published:08 October 2013Publication History
Skip Abstract Section

Abstract

We present a glasses-free 3D display design with the potential to provide viewers with nearly correct accommodative depth cues, as well as motion parallax and binocular cues. Building on multilayer attenuator and directional backlight architectures, the proposed design achieves the high angular resolution needed for accommodation by placing spatial light modulators about a large lens: one conjugate to the viewer's eye, and one or more near the plane of the lens. Nonnegative tensor factorization is used to compress a high angular resolution light field into a set of masks that can be displayed on a pair of commodity LCD panels. By constraining the tensor factorization to preserve only those light rays seen by the viewer, we effectively steer narrow high-resolution viewing cones into the user's eyes, allowing binocular disparity, motion parallax, and the potential for nearly correct accommodation over a wide field of view. We verify the design experimentally by focusing a camera at different depths about a prototype display, establish formal upper bounds on the design's accommodation range and diffraction-limited performance, and discuss practical limitations that must be overcome to allow the device to be used with human observers.

Skip Supplemental Material Section

Supplemental Material

a153-sidebyside.mp4

mp4

26.6 MB

References

  1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 804--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Brott, R. and Schultz, J. 2010. Directional backlight lightguide considerations for full resolution autostereoscopic 3d displays. SID Symp. Digest Tech Papers 41, 1, 218--221.Google ScholarGoogle ScholarCross RefCross Ref
  3. Chien, K.-W. and Shieh, H.-P. D. 2006. Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays. Appl. Optics 45, 13, 3106--3110.Google ScholarGoogle ScholarCross RefCross Ref
  4. Chu, Y. M., Chien, K. W., Shieh, H. P. D., Chang, J. M. A., Hu, Y. C. S., and Yang, V. 2005. 3D mobile display based on dual-directional light guides with a fast-switching liquid-crystal panel. J. Soc. Inf. Display 13, 10, 875--879.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cichocki, A., Zdunek, R., Phan, A. H., and Ichi Amari, S. 2009. Nonnegative Matrix and Tensor Factorizations. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Appl. Optics 46, 8, 1244--1250.Google ScholarGoogle ScholarCross RefCross Ref
  7. Favalora, G. E. 2005. Volumetric 3d displays and application infrastructure. IEEE Comput. 38, 37--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gotoda, H. 2010. A multilayer liquid crystal display for autosteroscopic 3D viewing. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XXI. Vol. 7524. 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  9. Gotoda, H. 2011. Reduction of image blurring in an autostereoscopic multilayer liquid crystal display. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XXII. Vol. 7863. 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  10. Hagood, N., Barton, R., Brosnihan, T., Fijol, J., Gandhi, J., Halfman, M., Payne, R., and Steyn, J. L. 2007. 35.5l: Late-news paper: A direct-view mems display for mobile applications. SID Symp. Digest Tech. Papers 38, 1, 1278--1281.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hecht, E. 2001. Optics, 4th ed. Addison-Wesley.Google ScholarGoogle Scholar
  12. Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive image synthesis for compressive displays. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hoffman, D., Girshick, A., Akeley, K., and Banks, M. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8, 3, 33.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hoffman, D. M. and Banks, M. S. 2009. Stereo display with time-multiplexed focal adjustment. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XX. Vol. 7237. 1--8.Google ScholarGoogle Scholar
  15. Hoffman, D. M. and Banks, M. S. 2010. Focus information is used to interpret binocular images. J. Vis. 10, 5, 13.Google ScholarGoogle ScholarCross RefCross Ref
  16. Huang, F.-C., Lanman, D., Barsky, B. A., and Raskar, R. 2012. Correcting for optical aberrations using multilayer displays. ACM Trans. Graph. 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ives, F. E. 1903. Parallax stereogram and process of making same. U.S. Patent 725, 567.Google ScholarGoogle Scholar
  18. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360 degree light field display. ACM Trans. Graph. 26, 40:1--40:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kolda, T. G. and Bader, B. W. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3, 455--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kwon, H. and Choi, H.-J. 2012. A time-sequential multiview autostereoscopic display without resolution loss using a multi-directional backlight unit and an lcd panel. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XXIII. Vol. 8288. 1--6.Google ScholarGoogle Scholar
  21. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: Optimizing dual-layer 3d displays using low-rank light field factorization. ACM Trans. Graph. 29, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer lcds. ACM Trans. Graph. 30, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lippmann, G. 1908. Epreuves reversibles donnant la sensation du relief. J. Phys. 7, 4, 821--825.Google ScholarGoogle Scholar
  24. Marwah, K., Wetzstein, G., Bando, Y., and Raskar, R. 2013. Compressive light field photography using overcomplete dictionaries and optimized projections. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mather, J., Barratt, N., Kean, D. U., Walton, E. J., and Bourhill, G. 2009. Directional backlight, a multiple view display and a multi-direction display. U.S. Patent Application 11/814, 383.Google ScholarGoogle Scholar
  26. Pamplona, V., Oliveira, M., Aliaga, D., and Raskar, R. 2012. Tailored displays to compensate for visual aberrations. ACM Trans. Graph. 31, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and Defanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE Trans. Vis. Comput. Graph. 14, 3, 487--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Putilin, A. N., Lukianitsa, A. A., and Kanashin, K. 2001. Stereodisplay with neural network image processing. In Proceedings of the SPIE Conference on Advanced Display Technologies. Vol. 4511. 245--250.Google ScholarGoogle Scholar
  30. Shibata, T., Kawai, T., Ohta, K., Otsuki, M., Miyake, N., Yoshihara, Y., and Iwasaki, T. 2005. Stereoscopic 3d display with optical correction for the reduction of the discrepancy between accommodation and convergence. J. Soc. Inf. Display 13, 8, 665--671.Google ScholarGoogle ScholarCross RefCross Ref
  31. Stolle, H., Olaya, J.-C., Buschbeck, S., Sahm, H., and Schwerdtner, A. 2008. Technical solutions for a full-resolution autostereoscopic 2d/3d display technology. In Proceedings of the SPIE Conference. 1--12.Google ScholarGoogle Scholar
  32. Sullivan, A. 2003. A solid-state multi-planar volumetric display. SID Symp. Digest Tech Papers 32, 207--211.Google ScholarGoogle ScholarCross RefCross Ref
  33. Takaki, Y. 2006. High-density directional display for generating natural three-dimensional images. Proc. IEEE 94, 3.Google ScholarGoogle ScholarCross RefCross Ref
  34. Takaki, Y., Tanaka, K., and Nakamura, J. 2011. Super multi-view display with a lower resolution flat-panel display. Optics Express 19, 5, 4129--4139.Google ScholarGoogle ScholarCross RefCross Ref
  35. Toyooka, K., Miyashita, T., and Uchida, T. 2001. The 3d display using field-sequential lcd with light direction controlling back-light. SID Symp. Digest Tech Papers 32, 1, 174--177.Google ScholarGoogle ScholarCross RefCross Ref
  36. Travis, A., Large, T., Emerton, N., and Bathiche, S. 2013. Wedge optics in flat panel displays. Proc. IEEE 101, 1, 45--60.Google ScholarGoogle ScholarCross RefCross Ref
  37. Travis, A. R. L. 1990. Autostereoscopic 3-d display. Appl. Optics 29, 4341--4342.Google ScholarGoogle ScholarCross RefCross Ref
  38. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhang, W., Ye, Z., Zhao, T., Chen, Y., and Yu, F. 2007. Point spread function characteristics analysis of the wavefront coding system. Optics Express 15, 4, 1543--1552.Google ScholarGoogle ScholarCross RefCross Ref
  41. Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3d displays. In Proceedings of the Eurographics Symposium on Rendering Techniques. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Focus 3D: Compressive accommodation display

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 5
      September 2013
      142 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2516971
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 October 2013
      • Accepted: 1 June 2013
      • Revised: 1 May 2013
      • Received: 1 October 2012
      Published in tog Volume 32, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader