skip to main content
research-article

Multiple-Fluid SPH Simulation Using a Mixture Model

Published:23 September 2014Publication History
Skip Abstract Section

Abstract

This article presents a versatile and robust SPH simulation approach for multiple-fluid flows. The spatial distribution of different phases or components is modeled using the volume fraction representation, the dynamics of multiple-fluid flows is captured by using an improved mixture model, and a stable and accurate SPH formulation is rigorously derived to resolve the complex transport and transformation processes encountered in multiple-fluid flows. The new approach can capture a wide range of real-world multiple-fluid phenomena, including mixing/unmixing of miscible and immiscible fluids, diffusion effect and chemical reaction, etc. Moreover, the new multiple-fluid SPH scheme can be readily integrated into existing state-of-the-art SPH simulators, and the multiple-fluid simulation is easy to set up. Various examples are presented to demonstrate the effectiveness of our approach.

Skip Supplemental Material Section

Supplemental Material

References

  1. R. Ando and R. Tsuruno. 2010. Vector fluid: A vector graphics depiction of surface flow. In Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering (NPAR'10). ACM Press, New York, 129--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. Bao, X. Wu, H. Zhang, and E. Wu. 2010. Volume fraction based miscible and immiscible fluid animation. Comput. Animat. Virtual Worlds 21, 3--4, 401--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Becker and M. Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). Eurographics Association, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Boyd and R. Bridson. 2012. Multiflip for energetic two-phase fluid simulation. ACM Trans. Graph. 31, 2, 16:1--16:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. O. Busaryev, T. K. Dey, H. Wang, and Z. Ren. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4, 63:1--63:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. W. Cleary. 1996. New implementation of viscosity: Tests with couette flows. Tech. rep. DMS-C96/32, CSIRO Division of Math and Statistics.Google ScholarGoogle Scholar
  7. P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo. 2007. Bubbling and frothing liquids. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Colagrossi and M. Landrini. 2003. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 2, 448--475. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji. 2011. Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  10. F. Dagenais, J. Gagnon, and E. Paquette. 2012. A prediction-correction approach for stable SPH fluid simulation from liquid to rigid. In Proceedings of the Computer Graphics International.Google ScholarGoogle Scholar
  11. M. Desbrun and M. Paule Gascuel. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation. Springer, 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. M. Gonzalez, J. M. Sanchez, F. Macia, and A. Souto-Iglesias. 2009. Analysis of WCSPH laminar viscosity models. In Proceedings of the 4th ER-COFTAC SPHERIC Workshop on SPH Applications.Google ScholarGoogle Scholar
  13. J. Gregson, M. Krimerman, M. B. Hullin, and W. Heidrich. 2012. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. 31, 4, 52:1--52:10 (to appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J.-M. Hong and C.-H. Kim. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J.-M. Hong, H.-Y. Lee, J.-C. Yoon, and C.-H. Kim. 2008. Bubbles alive. ACM Trans. Graph. 27, 3, 48:1--48:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Hu and N. Adams. 2006. A multi-phase {SPH} method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 2, 844--861. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. I. Ihm, B. Kang, and D. Cha. 2004. Animation of reactive gaseous fluids through chemical kinetics. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner. 2012. Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28, 6--8, 669--677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. Kang, Y. Jang, and I. Ihm. 2007. Animation of chemically reactive fluids using a hybrid simulation method. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. N. Kang, J. Park, J. Noh, and S. Y. Shin. 2010. A hybrid approach to multiple fluid simulation using volume fractions. Comput. Graph. Forum 29, 2, 685--694.Google ScholarGoogle ScholarCross RefCross Ref
  21. R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutre, and M. Gross. 2005. A unified lagrangian approach to solid-fluid animation. In Proceedings of the 2nd Eurographics/IEEE/VGTC Conference on Point-Based Graphics (SPBG'05). Eurographics Association, 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. B. Kim. 2010. Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. 29, 6, 175:1--175:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. Kim, O.-Y. Song, and H.-S. Ko. 2010. A practical simulation of dispersed bubble flow. ACM Trans. Graph. 29, 70:1--70:5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P.-R. Kim, H.-Y. Lee, J.-H. Kim, and C.-H. Kim. 2012. Controlling shapes of air bubbles in a multi-phase fluid simulation. Vis. Comput. 28, 6--8, 597--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. N. I. Kolev. 2005. Multiphase Flow Dynamics 1: Fundamentals. Springer.Google ScholarGoogle Scholar
  27. S. Liu, Q. Liu, and Q. Peng. 2011. Realistic simulation of mixing fluids. Vis. Comput. 27, 3, 241--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Manninen, V. Taivassalo, and S. Kallio. 1996. On the mixture model for multiphase flow. http://www.vtt.fi/inf/pdf/publications/1996/P288.pdf.Google ScholarGoogle Scholar
  30. V. Mihalef, B. Unlusu, D. Metaxas, M. Sussman, and M. Y. Hussaini. 2006. Physics based boiling simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'06). Eurographics Association, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B. B. Christensen, J. A. Bærentzen, and R. Bridson. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'12). Eurographics Association, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Monaghan. 1992. Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543--574.Google ScholarGoogle ScholarCross RefCross Ref
  33. J. J. Monaghan and A. Rafiee. 2013. A simple sph algorithm for multi-fluid flow with high density ratios. Int. J. Numer. Methods Fluids 71, 5, 537--561.Google ScholarGoogle ScholarCross RefCross Ref
  34. P. Mullen, A. McKenzie, Y. Tong, and M. Desbrun. 2007. A variational approach to eulerian geometry processing. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. M. Muller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). Eurographics Association, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. Muller, B. Solenthaler, R. Keiser, and M. Gross. 2005. Particle-based fluid-fluid interaction. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM Press, New York, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. B. Nielsen and O. Osterby. 2013. A two-continua approach to eulerian simulation of water spray. ACM Trans. Graph. 32, 4, 67:1--67:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Park, Y. Kim, D. Wi, N. Kang, S. Y. Shin, and J. Noh. 2008. A unified handling of immiscible and miscible fluids. Comput. Animat. Virtual Worlds 19, 3--4, 455--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Premoze, T. Tasdizen, J. Bigler, A. E. Lefohn, and R. T. Whitaker. 2003. Particle-based simulation of fluids. Comput. Graph. Forum 22, 3, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  40. B. Solenthaler and R. Pajarola. 2008. Density contrast sph interfaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'08). Eurographics Association, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. B. Solenthaler, J. Schlafli, and R. Pajarola. 2007. A unified particle model for fluid-solid interactions: Research articles. Comput. Animat. Virtual Worlds 18, 1, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. H. Yeoh and J. Tu. 2009. Computational Techniques for Multiphase Flows. Butterworth-Heinemann.Google ScholarGoogle Scholar
  43. H. Zhu, X. Liu, Y. Liu, and E. Wu. 2006. Simulation of miscible binary mixtures based on lattice boltzmann method: Research articles. Comput. Animat. Virtual Worlds 17, 3--4, 403--410. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multiple-Fluid SPH Simulation Using a Mixture Model

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 5
        August 2014
        152 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2672594
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 September 2014
        • Accepted: 1 April 2014
        • Revised: 1 March 2014
        • Received: 1 September 2013
        Published in tog Volume 33, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader