skip to main content
research-article

Adaptive Rendering Based on Weighted Local Regression

Published:23 September 2014Publication History
Skip Abstract Section

Abstract

Monte Carlo ray tracing is considered one of the most effective techniques for rendering photo-realistic imagery, but requires a large number of ray samples to produce converged or even visually pleasing images. We develop a novel image-plane adaptive sampling and reconstruction method based on local regression theory. A novel local space estimation process is proposed for employing the local regression, by robustly addressing noisy high-dimensional features. Given the local regression on estimated local space, we provide a novel two-step optimization process for selecting bandwidths of features locally in a data-driven way. Local weighted regression is then applied using the computed bandwidths to produce a smooth image reconstruction with well-preserved details. We derive an error analysis to guide our adaptive sampling process at the local space. We demonstrate that our method produces more accurate and visually pleasing results over the state-of-the-art techniques across a wide range of rendering effects. Our method also allows users to employ an arbitrary set of features, including noisy features, and robustly computes a subset of them by ignoring noisy features and decorrelating them for higher quality.

Skip Supplemental Material Section

Supplemental Material

References

  1. P. Bauszat, M. Eisemann, and M. Magnor. 2011. Guided image filtering for interactive high-quality global illumination. Comput. Graph. Forum 30, 4, 1361--1368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. L. Belcour, C. Soler, K. Subr, N. Holzschuch, and F. Durand. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32, 3, 31:1--31:18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. W. S. Cleveland and C. L. Loader. 1996. Smoothing by local regression: Principles and methods. In Statistical Theory and Computational Aspects of Smoothing, Springer, New York, 10--49.Google ScholarGoogle Scholar
  4. H. Dammertz, D. Sewtz, J. Hanika, and H. P. A. Lensch. 2010. Edge-avoiding a-trous wavelet transform for fast global illumination filtering. In Proceedings of the Conference on High Performance Graphics. 67--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Decoro, T. Weyrich, and S. Rusinkiewicz. 2010. Density based outlier rejection in monte carlo rendering. Comput. Graph. Forum 29, 7, 2119--2125.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Egan, F. Durand, and R. Ramamoorthi. 2011a. Practical filtering for efficient ray-traced directional occlusion. ACM Trans. Graph. 30, 6, 180:1--180:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi. 2011b. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 20, 2, 9:1--9:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. Egan, Y.-T. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3, 93:1--93:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Hachisuka, W. Jarosz, and H. W. Jensen. 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph. 29, 6, 144:1--144:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. Hachisuka, W. Jarosz, R. P. Weistroffer, K. Dale, G. Humphreys, M. Zwicker, and H. W. Jensen. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Hansen. 1987. The truncated SVD as a method for regularization. BIT Numer. Math. 27, 4, 534--553. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. He, J. Sun, and X. Tang. 2013. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 6, 1397--1409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. K. Kalantri and P. Sen. 2013. Removing the noise in Monte Carlo rendering with general image denoising algorithms. Comput. Graph. Forum 32, 2, 93--102.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. S. Kaplanyan and C. Dachsbacher. 2013. Adaptive progressive photon mapping. ACM Trans. Graph. 32, 2, 16:1--16:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30, 4, 55:1--55:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Lehtinen, T. Aila, S. Laine, and F. Durand. 2012. Reconstructing the indirect light field for global illumination. ACM Trans. Graph. 31, 4, 51:1--51:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T.-M. Li, Y.-T. Wu, and Y.-Y. Chuang. 2012. Sure-based optimization for adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6, 194:1--194:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. D. McCool. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans. Graph. 18, 2, 171--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Meyer and J. Anderson. 2006. Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3, 1075--1080. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. P. Mitchell. 1987. Generating antialiased images at low sampling densities. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. Vol. 21, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. Moon, J. Y. Jun, J. Lee, K. Kim, T. Hachisuka, and S.-E. Yoon. 2013. Robust image denoising using a virtual flash image for Monte Carlo ray tracing. Comput. Graph. Forum 32, 1, 139--151.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. C. Nash. 1975. A one-sided transformation method for the singular value decomposition and algebraic eigenproblem. The Comput. J. 18, 1, 74--76.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. S. Overbeck, C. Donner, and R. Ramamoorthi. 2009. Adaptive wavelet rendering. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques in Asia. 140:1--140:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Pharr and G. Humphreys. 2010. Physically Based Rendering: From Theory to Implementation 2nd Ed. Morgan Kaufmann, San Fransisco. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C. Dachsbacher. 2009. Micro-rendering for scalable, parallel final gathering. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques in Asia. 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. F. Rousselle, C. Knaus, and M. Zwicker. 2011. Adaptive sampling and reconstruction using greedy error minimization. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques in Asia. 159:1--159:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. F. Rousselle, C. Knaus, and M. Zwicker. 2012. Adaptive rendering with non-local means filtering. ACM Trans. Graph. 31, 6, 195:1--195:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Ruppert and M. Wand. 1994. Multivariate locally weighted least squares regression. The Ann. Statist. 22, 3, 1346--1370.Google ScholarGoogle ScholarCross RefCross Ref
  29. H. E. Rushmeier and G. J. Ward. 1994. Energy preserving non-linear filters. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Schwarzhaupt, H. W. Jensen, and W. Jarosz. 2012. Practical Hessian-based error control for irradiance caching. ACM Trans. Graph. 31, 6, 193:1--193:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Segovia, J. C. Iehl, R. Mitanchey, and B. Peroche. 2006. Non-interleaved deferred shading of interleaved sample patterns. In Proceedings of the 21st ACM SIGGRAPH/Eurographics Symposium on Graphics Hardware. 53--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. P. Sen and S. Darabi. 2012. On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31, 3, 18:1--18:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Shirley, T. Aila, J. Cohen, E. Enderton, S. Laine, D. Luebke, and M. McGuire. 2011. A local image reconstruction algorithm for stochastic rendering. In Proceedings of the Symposium on Interactive 3D Graphics and Games. 9--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. Soler, K. Subr, F. Durand, N. Holzschuch, and F. Sillion. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2, 18:1--18:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. G. Stewart. 1993. On the early history of the singular value decomposition. SIAM Rev. 35, 4, 551--566. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adaptive Rendering Based on Weighted Local Regression

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 33, Issue 5
      August 2014
      152 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2672594
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 September 2014
      • Accepted: 1 March 2014
      • Revised: 1 January 2014
      • Received: 1 July 2013
      Published in tog Volume 33, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader