skip to main content
research-article
Free Access

Optimality in robot motion: optimal versus optimized motion

Published:01 September 2014Publication History
Skip Abstract Section

Abstract

Exploring the distinction between an optimal robot motion and a robot motion resulting from the application of optimization techniques.

References

  1. Balkcom, D. and Mason, M. Time optimal trajectories for differential drive vehicles. Int. J. Robotics Research 21, 3 (2002), 199--217.Google ScholarGoogle ScholarCross RefCross Ref
  2. Barraquand, J. and Ferbach, P. A method of progressive constraints for manipulation planning. IEEE Trans. on Robotics and Automation 13, 4 (1997) 473--485.Google ScholarGoogle Scholar
  3. Barraquand, J. and Lacombe, J.-C. Robot motion planning: A distributed representation approach. Intern. J. of Robotics Research 10, 6 (1991), 628--649. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bobrow, J., Dubowsky, S. and Gibson, J. Time-optimal control of robotic manipulators along specified paths. Int. J. of Robotics Research 4, 3 (1985), 3--17Google ScholarGoogle ScholarCross RefCross Ref
  5. Brady, M., Hollerbach, J., Johnson, T., Lozano-Pérez, T. and Masson, M.T. Robot Motion: Planning and Control. MIT Press, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brock, O. and Khatib, O. Elastic strips: A framework for motion generation in human environments. Int. J. of Robotics Research 21, 12 (2002), 1031--1052.Google ScholarGoogle ScholarCross RefCross Ref
  7. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, A., Burgard, W., Kavraki, L.E. and Thrun, S. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA, June 2005.Google ScholarGoogle Scholar
  8. Connolly, C. and Grupen, R. Applications of harmonic functions to robotics. J. of Robotic Systems 10, 7 (1992), 931--946.Google ScholarGoogle Scholar
  9. Dalibard, S., Nakhaei, A., Lamiraux, F. and Laumond, J.-P. Whole-body task planning for a humanoid robot: A way to integrate collision avoidance. In Proceedings of IEEE-RAS Int. Conference on Humanoid Robots, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  10. Desaulniers, G. On shortest paths for a car-like robot maneuvering around obstacles. Robotics and Autonomous Systems 17 (1996), 139--148.Google ScholarGoogle ScholarCross RefCross Ref
  11. Diehl, M. and Mombaur, K., eds. Fast Motions in Biomechanics and Robotics. Lecture Notes in Control and Information Sciences, vol 340. Springer, 2006.Google ScholarGoogle Scholar
  12. Donald, B., Xavier, P., Canny, J. and Reif, J. Kinodynamic motion planning. JACM 40, 5 (1993), 1048--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dubins, L. On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Amer. J. of Mathematics 79 (1957), 497--516.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hopcroft, J. Schwartz, J. and Sharir, M. Planning, Geometry, and Complexity of Robot Motion. Ablex, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jacobs, P., Laumond, J.-P. and Rege, A. Nonholonomic motion planning for HILARE-like mobile robots. Intelligent Robotics. M. Vidyasagar and M. Trivedi, eds. McGraw Hill, 1991.Google ScholarGoogle Scholar
  16. Jaouni, H., Khatib, M. and Laumond, J.-P. Elastic bands for nonholonomic car-like robots: algorithms and combinatorial issues. In Robotics: The Algorithmic Perspective. P. Agarwal, L. Kavraki, and M. Mason, eds. A.K. Peters, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jean, F. Complexity of nonholonomic motion planning. Int. J. of Control 74, 8 (2001), 776--782.Google ScholarGoogle ScholarCross RefCross Ref
  18. Jurdjevic, V. Geometric Control Theory. Cambridge University Press, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P. and Schaal, S. Stomp: Stochastic trajectory optimization for motion planning. In Proceedings of the IEEE Int. Conf. on Robotics and Automation (2011).Google ScholarGoogle ScholarCross RefCross Ref
  20. Kavraki, L., Svestka, P., Latombe, J.-C. and Overmars, M. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. on Robotics and Automation 12, 4 (1996), 566--580.Google ScholarGoogle ScholarCross RefCross Ref
  21. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. The Int. J. of Robotics Research 5, 1 (1986), 90--98, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Latombe, J.-C. Robot Motion Planning. Kluwer Academic Press, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Laumond, J., Mansard, N. and Lasserre, J. Robot motion optimization as action selection principle. Commun. ACM, (to appear).Google ScholarGoogle Scholar
  24. Laumond, J.-P., Jacobs, P., Taix, M. and Murray, R. A motion planner for nonholonomic mobile robots. IEEE Trans. on Robotics and Automation, 10, 5 (1994), 577--593.Google ScholarGoogle ScholarCross RefCross Ref
  25. Laumond, J.-P. and Siméon, T. Notes on visibility roadmaps and path planning. New Directions in Algorithmic and Computational Robotics. B. Donald, K. Lynch, and D. Rus, eds. A.K. Peters, 2001.Google ScholarGoogle Scholar
  26. LaValle, S. Planning Algorithms. Cambridge University Press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. LaValle, S. and Kuffner, J. Rapidly-exploring random trees: Progress and prospects. Algorithmic and Computational Robotics: New Directions. B. Donald, K. Lynch and D. Rus, eds. A.K. Peters, 2001, 293--308.Google ScholarGoogle Scholar
  28. Lozano-Pérez, T. Spatial planning: A configuration space approach. IEEE Trans. on Computer 32, 2 (1983), 108--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Neustadt, L. Optimization, a moment problem and non linear programming. SIAM J. Control (1964), 33--53.Google ScholarGoogle Scholar
  30. Paul, R. Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge, MA, 1st edition, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pfeiffer, F. and Johanni, R. A concept for manipulator trajectory planning. IEEE Journal of Robotics and Automation 3, 2 (1987).Google ScholarGoogle ScholarCross RefCross Ref
  32. Quinlan, S. and Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the IEEE Int. Conf. on Robotics and Automation (1993).Google ScholarGoogle ScholarCross RefCross Ref
  33. Reeds, J. and Shepp, L. Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics 145, 2 (1990), 367--393.Google ScholarGoogle ScholarCross RefCross Ref
  34. Rimon, E. and Koditschek. Exact robot navigation using artificial potential fields. IEEE Trans. on Robotics and Automation 8, 5 (1992), 501--518.Google ScholarGoogle ScholarCross RefCross Ref
  35. Schwartz, J. and Sharir, M. On the piano movers problem II: General techniques for computing topological properties of real algebraic manifolds. Advances of Applied Mathematics 4 (1983), 298--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Shin, K.G. and McKay, N.D. Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans. on Automatic Control 30, 6 (1985), 531--541.Google ScholarGoogle Scholar
  37. Souères, P. and Laumond, J.-P. Shortest paths synthesis for a car-like robot. IEEE Trans. on Automatic Control 41, 5 (1996), 672--688.Google ScholarGoogle ScholarCross RefCross Ref
  38. Sussmann, H. and Tang, G. Shortest paths for the Reeds-Shepp car: A worked out example of the use of geometric techniques in nonlinear optimal control. Rutgers Center for Systems and Control Technical Report 91-10, 1991.Google ScholarGoogle Scholar
  39. Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J.D. and Diehlm M. Time-optimal path tracking for robots: A convex optimization approach. IEEE Trans. on Automatic Control 54, 10 (2009), 2318--2327.Google ScholarGoogle ScholarCross RefCross Ref
  40. Zucker, M., Ratliff, N., Dragan, A., Pivtoraiko, M., Klingensmith, M., Dellin, C., Bagnell, J. and Srinivasa, S. Chomp: Covariant Hamiltonian optimization for motion planning. Int. J. of Robotics Research 32, 9-10 (2013), 1164--1193. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optimality in robot motion: optimal versus optimized motion

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image Communications of the ACM
              Communications of the ACM  Volume 57, Issue 9
              September 2014
              94 pages
              ISSN:0001-0782
              EISSN:1557-7317
              DOI:10.1145/2663191
              • Editor:
              • Moshe Y. Vardi
              Issue’s Table of Contents

              Copyright © 2014 ACM

              © 2014 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 1 September 2014

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Popular
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDFChinese translation

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format