skip to main content
research-article

A Factor-Based Bayesian Framework for Risk Analysis in Stochastic Simulations

Published:20 December 2017Publication History
Skip Abstract Section

Abstract

Simulation is commonly used to study the random behaviors of large-scale stochastic systems with correlated inputs. Since the input correlation is often induced by latent common factors in many situations, to facilitate system diagnostics and risk management, we introduce a factor-based Bayesian framework that can improve both computational and statistical efficiency and provide insights for system risk analysis. Specifically, we develop a flexible Gaussian copula-based multivariate input model that can capture important properties in the real-world data. A nonparametric Bayesian approach is used to model marginal distributions, and it can capture the properties, including multi-modality and skewness. We explore the factor structure of the underlying generative processes for the dependence. Both input and simulation estimation uncertainty are characterized by the posterior distributions. In addition, we interpret the latent factors and estimate their effects on the system performance, which could be used to support diagnostics and decision making for large-scale stochastic systems. Our approach is supported by both asymptotic theory and empirical study.

References

  1. O. Aguilar and M. West. 2000. Bayesian dynamic factor models and portfolio allocation. Journal of Business 8 Economic Statistics 18, 3 (2000), 338--357. http://www.jstor.org/stable/1392266.Google ScholarGoogle Scholar
  2. A. Akcay, B. Biller, and S. Tayur. 2011. Improved inventory targets in the presence of limited historical demand data. Manufact. Serv. Operat. Manage. 13, 3 (2011), 297--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Adelchi Azzalini and Antonella Capitanio. 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. Roy. Stat. Soc. B 65, 2 (2003), 367--389. http://www.jstor.org/stable/3647510Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Azzalini, A. with the collaboration of Capitanio. 2014. The Skew-normal and Related Families. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  5. R. R. Barton. 2007. Presenting a more complete characterization of uncertainty: Can it be done? In Proceedings of the 2007 INFORMS Simulation Society Research Workshop.Google ScholarGoogle Scholar
  6. R. R. Barton. 2012. Tutorial: Input uncertainty in output analysis. In Proceedings of the 2012 Winter Simulation Conference, C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher (Ed.). IEEE, 67--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. R. Barton, B. L. Nelson, and W. Xie. 2014. Quantifying input uncertainty via simulation confidence intervals. Informs J. Comput. 26 (2014), 74--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. R. Barton and L. W. Schruben. 1993. Uniform and bootstrap resampling of input distributions. In Proceedings of the 1993 Winter Simulation Conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Biller, A. Akcay, C. Corlu, and S. Tayur. 2014. A simulation-based support tool for data-driven decision making: Operational testing for dependence modeling. In Proceedings of the 2014 Winter Simulation Conference (WSC’14). 899--909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Biller and C. G. Corlu. 2011. Accounting for parameter uncertainty in large-scale stochastic simulations with correlated inputs. Operat. Res. 59 (2011), 661--673. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. Biller and C. G. Corlu. 2012. Copula-based multivariate input modeling. Surv. Operat. Res. Manage. Sci. 17 (2012), 69--84.Google ScholarGoogle ScholarCross RefCross Ref
  12. B. Biller and S. Ghosh. 2006. Multivariate input processes. In Handbooks in Operations Research and Management Science: Simulation, S. Henderson and B. L. Nelson (Eds.). Elsevier, Chapter 5.Google ScholarGoogle Scholar
  13. B. Biller and C. Gunes. 2010. Introduction to simulation input modeling. In Proceedings of the 2010 Winter Simulation Conference, B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yucesan (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. Biller and B. L. Nelson. 2009. Modeling and generating multivariate time-series input processes using a vector autoregressive technique. ACM Trans. Model. Comput. Simul. 13, 3 (2009), 211--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. C. Cario and B. L. Nelson. 1997. Modeling and Generating Random Vectors with Arbitrary Marginal Distributions and Correlation Matrix. Technical Report. Department of Industrial Engineering and Management Sciences, Northwestern University.Google ScholarGoogle Scholar
  17. R. C. H. Cheng and W. Holland. 1997. Sensitivity of computer simulation experiments to errors in input data. J. Stat. Comput. Simul. 57 (1997), 219--241.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. C. H. Cheng and W. Holland. 2004. Calculation of confidence intervals for simulation output. ACM Trans. Model. Comput. Simul. 14 (2004), 344--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. E. Chick. 2001. Input distribution selection for simulation experiments: Accounting for input uncertainty. Operat. Res. 49 (2001), 744--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. W. J. Conover. 1980. Practical Nonparametric Statistics. John Wiley 8 Sons, New York, NY.Google ScholarGoogle Scholar
  21. M. Drton. 2009. Likelihood ratio tests and singularities. The Annals of Statistics 37, 2 (2009), 979--1012.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Drton and M. Plummer. 2013. A bayesian information criterion for singular models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79, 2 (2017), 323--380.Google ScholarGoogle ScholarCross RefCross Ref
  23. M. Drton, B. Sturmfels, and S. Sullivant. 2007. Algebraic factor analysis: Tetrads, pentads and beyond. Probability Theory and Related Fields 138, 3 (2007), 463--493.Google ScholarGoogle ScholarCross RefCross Ref
  24. D. B. Dunson and J. A. Taylor. 2005. Approximate bayesian inference for quantiles. Journal of Nonparametric Statistics 17, 3 (2005), 385--400.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. D. Escobar and M. West. 1995. Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90, 430 (1995), 577--588.Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian Data Analysis (2nd ed.). Taylor 8 Francis Group, LLC, New York, NY.Google ScholarGoogle Scholar
  27. J. F. Geweke and K. J. Singleton. 1980. Interpreting the likelihood ratio statistic in factor models when sample size is small. J. Am. Stat. Assoc. 75, 369 (1980), 133--137.Google ScholarGoogle ScholarCross RefCross Ref
  28. S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. 1999. Posterior consistency of dirichlet mixtures in density estimation. Ann. Stat. 27, 1 (1999), 143--158.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Ghosal and A. W. van der Vaart. 2007. Posterior convergence rates of dirichlet mixtures at smooth densities. Ann. Stat. 35, 2 (2007), 697--723.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. K. Ghosh and R. V. Ramamoorthi. 2003. Bayesian Nonparametrics. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  31. S. Ghosh and S. G. Henderson. 2002. Properties of the NORTA method in higher dimensions. In Proceedings of the 2002 Winter Simulation Conference, E. Yűcesan, C. H. Chen, J. L. Snowdon, and J. M. Charnes (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, 263--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. J. Hanson. 1975. Stably updating mean and standard deviation of data. Commun. ACM 18, 1 (Jan. 1975), 57--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. D. Hoff. 2007. Extending the rank likelihood for semiparametric copula estimation. Ann. Appl. Stat. 1 (2007), 265--283.Google ScholarGoogle ScholarCross RefCross Ref
  34. L. J. Hong, Z. Hu, and G. Liu. 2014. Monte carlo methods for value-at-risk and conditional value-at-risk: A review. ACM Trans. Model. Comput. Simul. 24, 4, Article 22 (2014), 37 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. Horiguchi, N. Raghavan, R. Uzsoy, and S. Venkateswaran. 2001. Finite-capacity production planning algorithms for a semiconductor wafer fabrication facility. Int. J. Prod. Res. 39 (2001), 825--842.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. C. Hsu and B. L. Nelson. 1990. Control variate for quantile estimation. Manage. Sci. 36, 7 (1990), 835--851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Jeffreys. 1961. Theory of Probability (3 ed.). Claredon, Oxford.Google ScholarGoogle Scholar
  38. H. Joe. 2005. Asymptotic efficiency of the two-stage estimation method for copula-based models. J. Multivar. Anal. 94 (2005), 401419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Lam. 2016. Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation. In Proceedings of the 2016 Winter Simulation Conference, T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. T. Lancaster and J. J. Sung. 2010. Bayesian quantile regression methods. J. Appl. Econometr. 25, 2 (2010), 287--307.Google ScholarGoogle ScholarCross RefCross Ref
  41. M. Lavine. 1995. On an approximate likelihood for quantiles. Biometrika 82, 1 (1995), 220--222.Google ScholarGoogle ScholarCross RefCross Ref
  42. H. F. Lopes and M. West. 2004. Bayesian model assessment in factor analysis. Stat. Sin. 14 (2004), 41--67.Google ScholarGoogle Scholar
  43. Y. Ma. 2011. Risk Management in Biopharmaceutical Supply Chains. Ph.D. Dissertation. University of California, Berkeley.Google ScholarGoogle Scholar
  44. B. Masih-Tehrani, S. H. Xu, S. Kumara, and H. Li. 2011. A single-period analysis of a two-echelon inventory system with dependent supply uncertainty. Transport. Res. 45, 1128--1151 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  45. J. S. Murray, D. B. Dunson, L. Carin, and J. E. Lucas. 2013. Bayesian gaussian copula factor models for mixed data. Journal of the American Statistical Association 108, 502 (2013), 656--665.Google ScholarGoogle ScholarCross RefCross Ref
  46. B. L. Nelson. 2016. ‘Some tactical problems in digital simulation’ for the next 10 years. Journal of Simulation 10, 1 (2016), 2--11.Google ScholarGoogle ScholarCross RefCross Ref
  47. S. H. Ng and S. E. Chick. 2006. Reducing parameter uncertainty for stochastic systems. ACM Transactions on Modeling and Computer Simulation 16, 1 (2006), 26--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. T. A. Severini. 2000. Likelihood Methods in Statistic. Oxford Statistical Science Series. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  49. M. S. Smith. 2011. Bayesian Approaches to Copula Modeling. Technical Report. University of Melbourne.Google ScholarGoogle Scholar
  50. E. Song, B. L. Nelson, and C. D. Pegden. 2014. Advanced tutorial: Input uncertainty quantification. In Proceedings of the 2014 Winter Simulation Conference, A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. S. M. Wagner, C. Bode, and P. Koziol. 2009. Supplier default dependencies: Empirical evidence from the automotive industry. European Journal of Operational Research 199, 1 (2009), 150--161.Google ScholarGoogle ScholarCross RefCross Ref
  52. M. West. 1990. Bayesian Kernel Density Estimation. Technical Report. Duke University.Google ScholarGoogle Scholar
  53. W. Xie, C. Li, and P. Zhang. 2017. A Bayesian nonparametric hierarchical framework for uncertainty quantification in simulation. (2017). under review.Google ScholarGoogle Scholar
  54. W. Xie, B. L. Nelson, and R. R. Barton. 2014. A bayesian framework for quantifying uncertainty in stochastic simulation. Operat. Res. 62, 6 (2014), 1439--1452.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. W. Xie, B. L. Nelson, and R. R. Barton. 2016. Multivariate input uncertainty in output analysis for stochastic simulation. ACM Trans. Model. Comput. Simul. 27, 5 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. F. Zouaoui and J. R. Wilson. 2003. Accounting for parameter uncertainty in simulation input modeling. IIE Trans. 35 (2003), 781--792.Google ScholarGoogle ScholarCross RefCross Ref
  57. F. Zouaoui and J. R. Wilson. 2004. Accounting for input-model and input-parameter uncertainties in simulation. IIE Trans. 36 (2004), 1135--1151.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Factor-Based Bayesian Framework for Risk Analysis in Stochastic Simulations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Modeling and Computer Simulation
        ACM Transactions on Modeling and Computer Simulation  Volume 27, Issue 4
        October 2017
        158 pages
        ISSN:1049-3301
        EISSN:1558-1195
        DOI:10.1145/3155315
        Issue’s Table of Contents

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 December 2017
        • Accepted: 1 October 2017
        • Revised: 1 July 2017
        • Received: 1 February 2017
        Published in tomacs Volume 27, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader