skip to main content
research-article

Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review

Authors Info & Claims
Published:18 November 2014Publication History
Skip Abstract Section

Abstract

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are two widely used risk measures of large losses and are employed in the financial industry for risk management purposes. In practice, loss distributions typically do not have closed-form expressions, but they can often be simulated (i.e., random observations of the loss distribution may be obtained by running a computer program). Therefore, Monte Carlo methods that design simulation experiments and utilize simulated observations are often employed in estimation, sensitivity analysis, and optimization of VaRs and CVaRs. In this article, we review some of the recent developments in these methods, provide a unified framework to understand them, and discuss their applications in financial risk management.

References

  1. C. Acerbi and D. Tasche. 2002. On the coherence of expected shortfall. Journal of Banking and Finance 26, 1487--1503.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Alexander, T. F. Coleman, and Y. Li. 2006. Minimizing CVaR and VaR for a portfolio of derivatives. Journal of Banking and Finance 30, 583--605.Google ScholarGoogle ScholarCross RefCross Ref
  3. F. Andersson, H. Mausser, D. Rosen, and S. Uryasev. 2001. Credit risk optimization with conditional value-at-risk criterion. Mathematical Programming 89, 273--291.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. Ankenman, B. L. Nelson, and J. Staum. 2010. Stochastic kriging for simulation metamodeling. Operations Research 58, 2, 371--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. 1999. Coherent measures of risk. Mathematical Finance 9, 3, 203--228.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Asmussen and P. W. Glynn. 2007. Stochastic Simulation: Algorithms and Analysis. Springer, New York.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. N. Avramidis and J. R. Wilson. 1998. Correlation-induction techniques for estimating quantiles in simulation experiments. Operations Research 46, 574--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Bahadur. 1966. A note on quantiles in large samples. Annals of Mathematical Statistics, 37, 577--580.Google ScholarGoogle ScholarCross RefCross Ref
  9. O. A. Bardou, N. Frikha, and G. Pagès. 2009. Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling. Monte Carlo Methods and Applications 15, 3, 173--210.Google ScholarGoogle ScholarCross RefCross Ref
  10. Basel Committee of Banking Supervision of the Bank for International Settlements. 2012. Fundamental review of the trading book. Consultative Document.Google ScholarGoogle Scholar
  11. H. G. Basova, R. T. Rockafellar, and J. O. Royset. 2011. A computational study of the buffered failure probability in reliability-based design optimization. In Proceedings of the 11th Conference on Application of Statistics and Probability in Civil Engineering.Google ScholarGoogle Scholar
  12. A. Bassamboo, S. Juneja, and A. Zeevi. 2008. Portfolio credit risk with extremal dependence: Asymptotic analysis and efficient simulation. Operations Research 56, 593--606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. P. Bertsekas. 2007. Dynamic Programming and Optimal Control (Vol. 2). Athena Scientific, Belmont, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Bosq. 1998. Nonparametric Statistics for Stochastic Processes. New York: Springer.Google ScholarGoogle Scholar
  15. M. Broadie, Y. Du, and C. C. Moallemi. 2010. Efficient risk estimation via nested sequential simulation. Management Science, 57, 1172--1194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Broadie, Y. Du, and C. C. Moallemi. 2011. Risk estimation via regression. Working paper, Graduate School of Business, Columbia University.Google ScholarGoogle Scholar
  17. M. Broadie and P. Glasserman. 1996. Estimating security price derivatives using simulation. Management Science, 42, 269--285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Calafiore and M. C. Campi. 2005. Uncertain convex programs: Randomized solutions and confidence levels. Mathematical Programming 102, 25--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Calafiore and M. C. Campi. 2006. The scenario approach to robust control design. IEEE Transactions on Automatic Control 51, 742--753.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. F. Carrière. 1996. Valuation of early-exercise price for options using simulations and nonparametric regression. Insurance: Mathematics and Economics 19, 19--30.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. Charnes, W. W. Cooper, and G. H. Symonds. 1958. Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil. Management Science 4, 235--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Chu and M. K. Nakayama. 2012. Confidence intervals for quantiles when applying variance-reduction techniques. ACM Transactions on Modeling and Computer Simulation 22, 2, Article 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Deng, K. Giesecke, and T. L. Lai. 2012. Sequential importance sampling and resampling for dynamic portfolio credit risk. Operations Research 60, 78--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. P. De Farias and B. Van Roy. 2004. On constraint sampling in the linear programming approach to approximate dynamic programming. Mathematics of Operations Research 29, 3, 462--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Duffie. 2001. Dynamic Asset Pricing Theory. Princeton University Press, Princeton, NJ.Google ScholarGoogle Scholar
  26. L. El Ghaoui, M. Oks, and F. Oustry. 2003. Worst case value-at-risk and robust portfolio optimization: A conic programming approach. Operations Research 51, 543--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. C. Fu, L. J. Hong, and J.-Q. Hu. 2009. Conditional Monte Carlo estimation of quantile sensitivities. Management Science 55, 2019--2027. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. C. Fu and J.-Q. Hu. 1997. Conditional Monte Carlo, Gradient Estimation and Optimization Applications. Kluwer Academic Publishers, Boston.Google ScholarGoogle Scholar
  29. P. Glasserman. 1991. Gradient Estimation via Perturbation Analysis. Kluwer Academic Publishers, Boston, MA.Google ScholarGoogle Scholar
  30. P. Glasserman. 2004. Monte Carlo Methods in Financial Engineering. Springer, New York.Google ScholarGoogle Scholar
  31. P. Glasserman. 2005. Measuring marginal risk contributions of credit portfolios. Journal of Computational Finance 9, 1--41.Google ScholarGoogle ScholarCross RefCross Ref
  32. P. Glasserman. 2008. Calculating portfolio credit risk. In Financial Engineering: Handbooks in Operations Research and Management Science, J. Birge and V. Linetsky (Eds.). Vol. 15. Elsevier, North-Holland, The Netherlands.Google ScholarGoogle Scholar
  33. P. Glasserman, P. Heidelberger, and P. Shahabuddin. 1999. Importance sampling and stratification for Value-at-Risk. Computational Finance 1999, Y. S. Abu-Mostafa, B. Le Baron, A. W. Lo, and A. S. Weigend (Eds.). MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  34. P. Glasserman, P. Heidelberger, and P. Shahabuddin. 2000. Variance reduction techniques for estimating value-at-risk. Management Science 46, 1349--1364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. Glasserman, P. Heidelberger, and P. Shahabuddin. 2002. Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, 12, 239--269.Google ScholarGoogle ScholarCross RefCross Ref
  36. P. Glasserman, W. Kang, and P. Shahabuddin. 2007. Large deviations in multifactor portfolio credit risk. Mathematical Finance 17, 345--379.Google ScholarGoogle ScholarCross RefCross Ref
  37. P. Glasserman, W. Kang, and P. Shahabuddin. 2008. Fast simulation of multifactor portfolio credit risk. Operations Research 56, 1200--1217.Google ScholarGoogle ScholarCross RefCross Ref
  38. P. Glasserman and J. Li. 2005. Importance sampling for portfolio credit risk. Management Science 51, 1643--1656.Google ScholarGoogle ScholarCross RefCross Ref
  39. P. W. Glynn. 1996. Importance sampling for Monte Carlo estimation of quantiles. In Proceedings of 1996 Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, St. Petersburg, Russia, 180--185.Google ScholarGoogle Scholar
  40. P. W. Glynn and D. L. Iglehart. 1989. Importance sampling for stochastic simulation. Management Science 35, 1367--1392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Gordy and S. Juneja. 2010. Nested simulation in portfolio risk measurement. Management Science 56(10), 1833--1848. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. Gupton, C. Finger, and M. Bhatia. 1997. CreditMetrics technical document. New York: J. P. Morgan & Co.Google ScholarGoogle Scholar
  43. B. Heidergott and W. Volk-Makarewicz. 2012. Sensitivity analysis of quantiles. Working paper.Google ScholarGoogle Scholar
  44. T. C. Hesterberg and B. L. Nelson. 1998. Control variates for probability and quantile estimation. Management Science 44, 1295--1312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Y. C. Ho and X. R. Cao. 1983. Perturbation analysis and optimization of queueing networks. Journal of Optimization Theory and Applications 40, 4, 559--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. T. Homem-de-Mello and G. Bayraksan. 2013. Monte Carlo sampling-based methods for stochastic optimization. Available at http://www.optimization-online.org/DB_FILE/2013/06/3920.pdf.Google ScholarGoogle Scholar
  47. L. J. Hong. 2009. Estimating quantile sensitivities. Operations Research 57, 118--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. L. J. Hong and G. Liu. 2009. Simulating sensitivities of conditional value-at-risk. Management Science 55, 281--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. L. J. Hong and G. Liu. 2010. Pathwise estimation of probability sensitivities through terminating or steady-state simulations. Operations Research 58, 357--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. L. J. Hong, Y. Yang, and L. Zhang. 2011. Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach. Operations Research 59, 617--630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. L. J. Hong, Z. Hu, and L. Zhang. 2012a. Conditional value-at-risk approximation to value-at-risk constrained programs: A remedy via Monte Carlo. INFORMS Journal on Computing 26, 2, 385--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. L. J. Hong, S. Juneja, and G. Liu. 2012b. Kernel smoothing for nested estimation with application to portfolio risk measurement. Working paper.Google ScholarGoogle Scholar
  53. J. C. Hsu and B. L. Nelson. 1990. Control variates for quantile estimation. Management Science 36, 835--851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Z. Hu and L. J. Hong. 2012. Kullback-Leibler divergence constrained distributionally robust optimization. Available at http://www.optimization-online.org/DB_FILE/2012/11/3677.pdf.Google ScholarGoogle Scholar
  55. Z. Hu, L. J. Hong, and A. M. C. So. 2013a. Distributionally robust probabilistic programs. Working paper. Available at http://www.optimization-online.org/DB_FILE/2013/09/4039.pdf.Google ScholarGoogle Scholar
  56. Z. Hu, L. J. Hong, and L. Zhang. 2013b. A smooth Monte Carlo approach to joint chance constrained program. IIE Transactions 45, 7, 716--735.Google ScholarGoogle ScholarCross RefCross Ref
  57. G. Iyengar and A. K. C. Ma. 2013. Fast gradient descent method for mean-CVaR optimization. Annals of Operations Research 205, 203--212.Google ScholarGoogle ScholarCross RefCross Ref
  58. P. Jorion. 2006. Value at Risk, (2nd ed.). McGraw-Hill, New York.Google ScholarGoogle Scholar
  59. P. Jorion. 2010. Financial Risk Manager Handbook (6th ed.). Wiley, New York.Google ScholarGoogle Scholar
  60. M. Kalkbrener. 2003. An axiomatic approach to capital allocation. Mathematical Finance 15, 425--437.Google ScholarGoogle ScholarCross RefCross Ref
  61. M. Kalkbrener, H. Lotter, and L. Overbeck. 2004. Sensible and efficient capital allocation for credit portfolios. Risk 17, 19--24.Google ScholarGoogle Scholar
  62. A. J. King and R. T. Rockafellar. 1993. Asymptotic theory for solutions in statistical estimation and stochastic programming. Mathematics of Operations Research 18, 1, 148--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. S. G. Kou, X. Peng, and C. C. Heyde. 2013. External risk measures and Basel accords. Mathematics of Operations Research 38, 3, 393--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. P. Krokhmal, J. Palmquist, and S. Uryasev. 2002. Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk 4, 11--27.Google ScholarGoogle Scholar
  65. A. Kurth and D. Tasche. 2003. Contributions to credit risk. Risk 16, 84--88.Google ScholarGoogle Scholar
  66. P. L’Ecuyer. 1990. A unified view of the IPA, SF, and LR gradient estimation techniques. Management Science 36, 11, 1364--1383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. H. Lan, B. L. Nelson, and J. Staum. 2010. A confidence interval procedure for expected shortfall risk measurement via two-level simulation. Operations Research 58, 5, 1481--1490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. A. M. Law and W. D. Kelton. 2000. Simulation Modeling & Analysis (3rd ed.). McGraw-Hill, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. S. H. Lee. 1998. Monte Carlo expectation of conditional quantiles. Ph.D. Thesis, Department of Operations Research, Stanford University.Google ScholarGoogle Scholar
  70. D. Li. 2000. On default correlation: A copula function approach. Journal of Fixed Income 9, 43--54.Google ScholarGoogle ScholarCross RefCross Ref
  71. C. Lim, H. D. Sherali, and S. Uryasev. 2010. Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Computational Optimization and Applications 46, 391--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. A. E. Lim, J. G. Shanthikumar, and G. Y. Vahn. 2011. Conditional value-at-risk in portfolio optimization: Coherent but fragile. Operations Research Letters 39, 3, 163--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. G. Liu. 2012. Simulating risk contributions of credit portfolios. Working paper, Department of Management Sciences, City University of Hong Kong.Google ScholarGoogle Scholar
  74. G. Liu and L. J. Hong. 2009. Kernel estimation of quantile sensitivities. Naval Research Logistics 56, 511--525.Google ScholarGoogle ScholarCross RefCross Ref
  75. M. Liu and J. Staum. 2010. Stochastic kriging for efficient nested simulation of expected shortfall. Journal of Risk 12, 3, 3--27.Google ScholarGoogle ScholarCross RefCross Ref
  76. F. A. Longstaff and S. Schwartz. 2001. Valuing American options by simulation: A simple least-squares approach. Review of Financial Studies 14, 113--147.Google ScholarGoogle ScholarCross RefCross Ref
  77. J. Luedtke and S. Ahmed. 2008. A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization 19, 2, 674--699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. A. J. McNeil, R. Frey, and P. Embrechts. 2005. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton.Google ScholarGoogle Scholar
  79. L. B. Miller and H. Wagner. 1965. Chance-constrained programming with joint constraints. Operations Research 13, 930--945. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. K. Natarajan, D. Pachamanova, and M. Sim. 2008. Incorporating asymmetric distributional information in robust value-at-risk optimization. Management Science 54, 3, 573--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. A. Nemirovski and A. Shapiro. 2005. Scenario approximation of chance constraints. Probabilistic and Randomized Methods for Design Under Uncertainty, G. Calafiore and F. Dabbene (Eds.). Springer, London, 3--48.Google ScholarGoogle Scholar
  82. A. Nemirovski and A. Shapiro. 2006. Convex approximations of chance constrained programs. SIAM Journal on Optimization 17, 969--996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Y. Nesterov. 2005. Smooth minimization of nonsmooth functions. Mathematical Programming 103, 127--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. W. Ogryczak and T. Śliwiński. 2011. On solving the dual for portfolio selection by optimizing conditional value at risk. Computational Optimization and Applications 50, 591--595.Google ScholarGoogle ScholarCross RefCross Ref
  85. B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. 2009. Sample average approximation method for chance constrained programming: Theory and applications. Journal of Optimization Theory and Applications 142, 399--416.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. G. Pflug. 2000. Some remarks on the value-at-risk and conditional value-at-risk. In Probabilistic Constrained Optimization: Methodology and Applications, S. Uryasev (Ed.). Kluwer, Dordrecht, The Netherlands, 272--281.Google ScholarGoogle Scholar
  87. A. Prékopa. 1970. On probabilistic constrained programming. Proceedings of the Princeton Symposium on Mathematical Programming, 113--138.Google ScholarGoogle Scholar
  88. R. T. Rockafellar and J. O. Royset. 2010. On buffered failure probability in design and optimization of structures. Reliability Engineering & System Safety 95, 499--510.Google ScholarGoogle ScholarCross RefCross Ref
  89. R. T. Rockafellar and S. Uryasev. 2000. Optimization of conditional value-at-risk. Journal of Risk, 2, 21--41.Google ScholarGoogle ScholarCross RefCross Ref
  90. R. T. Rockafellar and S. Uryasev. 2002. Conditional value-at-risk for general loss distributions. Journal of Banking and Finance 26, 1443--1471.Google ScholarGoogle ScholarCross RefCross Ref
  91. O. Scaillet. 2004. Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical Finance, 14, 115--129.Google ScholarGoogle ScholarCross RefCross Ref
  92. R. J. Serfling. 1980. Approximation Theorems of Mathematical Statistics. Wiley, New York.Google ScholarGoogle Scholar
  93. A. Shapiro. 1993. Asymptotic behavior of optimal solutions in stochastic programming. Mathematics of Operations Research 18, 4, 829--845. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. A. Shapiro, D. Dentcheva, and A. Ruszczyński. 2009. Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. L. Sun and L. J. Hong. 2010. Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk. Operations Research Letters 38, 246--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. D. Tasche. 2009. Capital allocation for credit portfolios with kernel estimators. Quantitative Finance 9, 581--595.Google ScholarGoogle ScholarCross RefCross Ref
  97. A. A. Trindade, S. Uryasev, A. Shapiro, and G. Zrazhevsky. 2007. Financial prediction with constrained tail risk. Journal of Banking and Finance 31, 3524--3538.Google ScholarGoogle ScholarCross RefCross Ref
  98. J. N. Tsitsiklis and B. van Roy. 2001. Regression method for pricing complex American-style options. IEEE Transactions on Neural Networks, 12, 694--703. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. H. Xu and D. Zhang. 2009. Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Mathematical Programming 119, 371--401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. S. Zymler, D. Kuhn, and B. Rustem. 2013. Worst-case value-at-risk of nonlinear portfolios. Management Science, 59(1), 172--188. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 24, Issue 4
      Special Issue on Emerging Methodologies and Applications
      August 2014
      132 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/2617568
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 November 2014
      • Accepted: 1 August 2014
      • Revised: 1 August 2013
      • Received: 1 January 2013
      Published in tomacs Volume 24, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader