skip to main content
research-article

Realizing Reversible Computing in QCA Framework Resulting in Efficient Design of Testable ALU

Published:30 December 2014Publication History
Skip Abstract Section

Abstract

Reversible logic is emerging as a prospective logic design style for implementing ultra-low-power VLSI circuits. It promises low-power consuming circuits by nullifying the energy dissipation in irreversible logic. On the other hand, as a potential alternative to CMOS technology, Quantum-dot Cellular Automata (QCA) promises energy efficient digital design with high device density and high computing speed. The integration of reversible logic in QCA circuit is expected to be effective in addressing the issue of energy dissipation at nano scale regime. This work targets the design of reversible ALU (arithmetic logic unit) in QCA framework and proposes a new “Reversible QCA” (RQCA). The primary design focus is on optimizing the number of reversible gates, quantum cost and the garbage outputs that are the most important hindrances in realizing reversible logic. Besides optimization, the fault coverage capability of RQCA under missing/additional cell deposition defects is analysed. The scope of reversible logic is further outstretched by introducing a novel DFT (design for testability) architecture around the reversible ALU that reduces testing overhead. The performance of proposed ALU is evaluated, subjected to different faults, and is established to be more effective than the existing ALU.

References

  1. Islamshah Amlani, Alexei O. Orlov, Geza Toth, Gary H. Bernstein, Craig S. Lent, and Gregory L. Snider. 1999. Digital logic gate using quantum-dot cellular automata. Science 284, 5412, 289--291.Google ScholarGoogle Scholar
  2. C. H. Bennett. 1973. Logical reversibility of computation. IBM J. Res. Devel. 525--532. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. Oscar Boykin and Vwani P. Roychowdhury. 2005. Reversible fault-tolerant logic. In Proceedings of the International Conference on Dependable Systems and Networks (DSN'05). 444--453. DOI: http://dx.doi.org/10.1109/DSN.2005.83 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amir Fijany and Benny N. Toomarian. 2001. New design for quantum dots cellular automata to obtain fault tolerant logic gates. Int. J. Nanoparticle Res. 3, 1, 27--37.Google ScholarGoogle ScholarCross RefCross Ref
  5. E. Fredkin and T. Toffoli. 1982. Conservative logic. Int. J. Theoret. Phys. 21, 219--253.Google ScholarGoogle ScholarCross RefCross Ref
  6. Swaroop Ghosh and Kaushik Roy. 2008. Exploring high-speed low-power hybrid arithmetic units at scaled supply and adaptive clock-stretching. In Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC'08). 635--640. DOI: http://dx.doi.org/10.1109/ASPDAC.2008.4484029 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Zhijin Guan, Wenjuan Li, Weiping Ding, Yueqin Hang, and Lihui Ni. 2011. An arithmetic logic unit design based on reversible logic gates. In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PacRim'11). 925--931. DOI: http://dx.doi.org/10.1109/PACRIM.2011.6033020Google ScholarGoogle ScholarCross RefCross Ref
  8. Pallav Gupta, Abhinav Agrawal, and Niraj K. Jha. 2006. An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 25, 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. William N. N. Hung, Xiaoyu Song, Guowu Yang, Jin Yang, and Marek Perkowski. 2006. Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 25, 9, 1652--1663. DOI: http://dx.doi.org/10.1109/TCAD.2005.858352 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. ISCAS 2004. IEEE International Symposium on Circuit and Systems. (2004). “QCA: A promising research area for CAS society”.Google ScholarGoogle Scholar
  11. Pawel Kerntopf. 2002. Synthesis of multipurpose reversible logic gates. In Proceedings of the Euromicro Symposium DSD. IEEE, 259--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Avinash G. Keskar and Vishal R. Satpute. 2011. Design of eight bit novel reversible arithmetic and logic unit. In Proceedings of the 4th International Conference on Emerging Trends in Engineering and Technology (ICETET'11). 227--232. DOI: http://dx.doi.org/10.1109/ICETET.2011.17 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Landauer. 1961. Irreversibility and heat generation in the computational process. IBM J. Res. Devel. 5, 183--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein. 1993. Quantum cellular automata. Nanotechnology 4, 49--57.Google ScholarGoogle ScholarCross RefCross Ref
  15. Xiaojun Ma, Jing Huang, and Fabrizio Lombardi. 2008. A model for computing and energy dissipation of molecular QCA devices and circuits. J. Emerg. Technol. Comput. Syst. 3, 4, Article 3, 30. DOI: http://dx.doi.org/10.1145/1324177.1324180 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mariam Momenzadeh, Jing Huang, Mehdi B. Tahoori, and Fabrizio Lombardi. 2005a. Characterization, test and logic synthesis of And-Or-Inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 24, 12, 1881--1893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mariam Momenzadeh, Marco Ottavi, and Fabrizio Lombardi. 2005b. Modeling QCA defects at molecular-level in combinational circuits. In Proceedings of the 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05). 208--216. DOI: http://dx.doi.org/10.1109/DFTVS.2005.46 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Matthew Arthur Morrison. 2012. Design of a reversible alu based on novel reversible logic structures. Master's thesis. Department of Computer Science and Engineering, University of South Florida.Google ScholarGoogle Scholar
  19. S. F. Murphy, M. Ottavi, M. Frank, and E. DeBenedictis. 2006. On the design of reversible QDCA systems. Techn. Rep. SAND2006-5990.Google ScholarGoogle Scholar
  20. Michael Nachtigal, Himanshu Thapliyal, and Nagarajan Ranganathan. 2010. Design of a reversible single precision floating point multiplier based on operand decomposition. In Proceedings of the IEEE Conference on Nanotechnology (IEEE-NANO'10). 233--237. DOI: http://dx.doi.org/10.1109/NANO.2010.5697746Google ScholarGoogle ScholarCross RefCross Ref
  21. Mark Oskin, Frederic T. Chong, and Isaac L. Chuang. 2002. A practical architecture for reliable quantum computers. Computer 35, 1, 79--87. DOI: http://dx.doi.org/10.1109/2.976922 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Marco Ottavi, Luca Schtano, Fabrizio Lombardi, and Dougals Tougaw. 2006. HDLQ: A HDL environment for QCA design. ACM J. Emerg. Tech. 2, 4, 243261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Zachary D. Patitz, Nohpill Park, Minsu Choi, and Fred J. Meyer. 2005. QCA-based majority gate design under radious of effect-induced faults. In Proceedings of the 20th International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Asher Peres. 1985. Reversible logic and quantum computers. Phys. Rev. A 32, 3266--3276. Issue 6. DOI: http://dx.doi.org/10.1103/PhysRevA.32.3266Google ScholarGoogle ScholarCross RefCross Ref
  25. Marek Perkowski, Martin Lukac, Pawel Kerntopf, Mikhail Pivtoraiko, Dongsoo Lee, Hyungock Kim, Woong Hwangbo, Jung wook Kim, and Yong Woo Choi. 2002. A hierarchical approach to computer-aided design of quantum circuits. In Proceedings of the 6th International Symposium on Representations and Methodology of Future Computing Technology. 201--209.Google ScholarGoogle Scholar
  26. Jie Ren and Vasili K. Semenov. 2011. Progress with physically and logically reversible superconducting digital circuits. IEEE Trans. Appl. Superconduct. 21, 3, 780--786. DOI: http://dx.doi.org/10.1109/TASC.2011.2104352Google ScholarGoogle ScholarCross RefCross Ref
  27. Bibhash Sen, Mamata Dalui, and Biplab K Sikdar. 2010. Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl. 1, 29, 81--87. DOI: http://dx.doi.org/10.5120/596-645Google ScholarGoogle Scholar
  28. Bibhash Sen, Manojit Dutta, Debajyoty Banik, Dipak K Singh, and Biplab K Sikdar. 2012. Design of fault tolerant reversible arithmetic logic unit in QCA. In Proceedings of the International Symposium on Electronic System Design (ISED'12). 241--245. DOI: http://dx.doi.org/10.1109/ISED.2012.50 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. John A. Smolin and David P. Divincenzo. 1995. Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys. Rev. A 53, 2855--2856.Google ScholarGoogle ScholarCross RefCross Ref
  30. Saket Srivastava, Sudeep Sarkar, and Sanjukta Bhanja. 2009. Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotech. 8, 1, 116--127. DOI: http://dx.doi.org/10.1109/TNANO.2008.2005408 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Y. Syamala and A. V. N. Tilak. 2011. Reversible arithmetic logic unit. In Proceedings of the 3rd International Conference on Electronics Computer Technology (ICECT'11), vol. 5, 207--211. DOI: http://dx.doi.org/10.1109/ICECTECH.2011.5941987Google ScholarGoogle ScholarCross RefCross Ref
  32. Mehdi B. Tahoori, Jing Huang, Mariam Momenzadeh, and Fabrizio Lombardi. 2004. Testing of quantum cellular automata. IEEE Trans. Nanotech. 3, 4, 432--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Himanshu Thapliyal and Nagarajan Ranganathan. 2010. Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotech. 9, 1, 62--69. DOI: http://dx.doi.org/10.1109/TNANO.2009.2025038 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Himanshu Thapliyal, Nagarajan Ranganathan, and Saurabh Kotiyal. 2012. Design of testable reversible sequential circuits. IEEE Trans. VLSI. DOI: http://dx.doi.org/10.1109/TVLSI.2012.2209688 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Michael Kirkedal Thomsen, Robert Glck, and Holger Bock Axelsen. 2010. Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A: Math. Theoret. 43, 38, 382002.Google ScholarGoogle ScholarCross RefCross Ref
  36. John Timler and Craig S. Lent. 2002. Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 2, 823--831.Google ScholarGoogle ScholarCross RefCross Ref
  37. Tommaso Toffoli. 1980. Reversible computing. Tech. rep. MIT/LCS/TM-151. DOI: http://dx.doi.org/10.1007/3-540-10003-2104Google ScholarGoogle Scholar
  38. Yvan Van Rentergem and Alexis De Vos. 2005. Optimal design of a reversible full adder. Int J. Unconvent. Comput. 1, 339--355.Google ScholarGoogle Scholar
  39. Konrad Walus, Timothy J. Dysart, Graham A. Jullien, and R. Arief Budiman. 2004. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotech. 3, 1, 26--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Xiaokuo Yang, Li Cai, Shuzhao Wang, Zhuo Wang, and Chaowen Feng. 2012. Reliability and performance evaluation of QCA devices with rotation cell defect. IEEE Trans. Nanotech. 11, 5, 1009--1018. DOI: http://dx.doi.org/10.1109/TNANO.2012.2211613 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Realizing Reversible Computing in QCA Framework Resulting in Efficient Design of Testable ALU

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 11, Issue 3
        Special Issue on Computational Synthetic Biology and Regular Papers
        December 2014
        219 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/2711453
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 December 2014
        • Accepted: 1 April 2014
        • Revised: 1 January 2014
        • Received: 1 September 2013
        Published in jetc Volume 11, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader