skip to main content

Observational equality: now for good

Published:12 January 2022Publication History
Skip Abstract Section

Abstract

Building on the recent extension of dependent type theory with a universe of definitionally proof-irrelevant types, we introduce TTobs, a new type theory based on the setoidal interpretation of dependent type theory. TTobs equips every type with an identity relation that satisfies function extensionality, propositional extensionality, and definitional uniqueness of identity proofs (UIP). Compared to other existing proposals to enrich dependent type theory with these principles, our theory features a notion of reduction that is normalizing and provides an algorithmic canonicity result, which we formally prove in Agda using the logical relation framework of Abel et al. Our paper thoroughly develops the meta-theoretical properties of TTobs, such as the decidability of the conversion and of the type checking, as well as consistency. We also explain how to extend our theory with quotient types, and we introduce a setoidal version of Swan's Id types that turn it into a proper extension of MLTT with inductive equality.

Skip Supplemental Material Section

Supplemental Material

popl22main-p191-p-video.mp4

mp4

124.3 MB

References

  1. Andreas Abel and Thierry Coquand. 2020. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality. Logical Methods in Computer Science, Volume 16, Issue 2 (2020), June, https://doi.org/10.23638/LMCS-16(2:14)2020 Google ScholarGoogle ScholarCross RefCross Ref
  2. Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion for Type Theory in Type Theory. Proceedings of the ACM on Programming Languages, 2, POPL (2018), Article 23, Jan., 29 pages. issn:2475-1421 https://doi.org/10.1145/3158111 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Peter Aczel. 1978. The Type Theoretic Interpretation of Constructive Set Theory. In Logic Colloquium ’77, Angus Macintyre, Leszek Pacholski, and Jeff Paris (Eds.) (Studies in Logic and the Foundations of Mathematics, Vol. 96). Elsevier, 55–66. issn:0049-237X https://doi.org/10.1016/S0049-237X(08)71989-X Google ScholarGoogle ScholarCross RefCross Ref
  4. T. Altenkirch. 1999. Extensional equality in intensional type theory. In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158). 412–420. issn:1043-6871 https://doi.org/10.1109/LICS.1999.782636 Google ScholarGoogle ScholarCross RefCross Ref
  5. Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. 2019. Setoid type theory - a syntactic translation. In MPC 2019 - 13th International Conference on Mathematics of Program Construction (LNCS, Vol. 11825). Springer, 155–196. https://doi.org/10.1007/978-3-030-33636-3_7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending Homotopy Type Theory with Strict Equality. In CSL. https://doi.org/10.4230/LIPIcs.CSL.2016.21 Google ScholarGoogle ScholarCross RefCross Ref
  7. Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In Proceedings of the Workshop on Programming Languages meets Program Verification (PLPV 2007). 57–68. https://doi.org/10.1145/1292597.1292608 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Paolo Capriotti. 2017. Models of type theory with strict equality. Ph.D. Dissertation. University of Nottingham.Google ScholarGoogle Scholar
  9. Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. 2021. The Taming of the Rew: A Type Theory with Computational Assumptions. Proc. ACM Program. Lang., 5, POPL (2021), Article 60, Jan., 29 pages. https://doi.org/10.1145/3434341 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2015. Cubical Type Theory: a constructive interpretation of the univalence axiom. In 21st International Conference on Types for Proofs and Programs (21st International Conference on Types for Proofs and Programs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Tallinn, Estonia. 262. https://doi.org/10.4230/LIPIcs.TYPES.2015.5 Google ScholarGoogle ScholarCross RefCross Ref
  11. Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. On Higher Inductive Types in Cubical Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). Association for Computing Machinery, New York, NY, USA. 255–264. isbn:9781450355834 https://doi.org/10.1145/3209108.3209197 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Peter Dybjer. 1996. Internal type theory. In Types for Proofs and Programs, Stefano Berardi and Mario Coppo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 120–134. isbn:978-3-540-70722-6 https://doi.org/10.1007/3-540-61780-9_66 Google ScholarGoogle ScholarCross RefCross Ref
  13. Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional Proof-Irrelevance without K. Proceedings of the ACM on Programming Languages, 3 (2019), Jan., 1–28. https://doi.org/10.1145/3290316 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur. Thèse de Doctorat d’État, Université de Paris VII.Google ScholarGoogle Scholar
  15. Martin Hofmann. 1993. Non Strictly Positive Datatypes in System F. Email on the Types mailing list. http://www.seas.upenn.edu/~sweirich/types/archive/1993/msg00027.htmlGoogle ScholarGoogle Scholar
  16. Martin Hofmann. 1995. Extensional concepts in intensional type theory. Ph.D. Dissertation. University of Edinburgh.Google ScholarGoogle Scholar
  17. Chris Kapulkin and Peter LeFanu Lumsdaine. 2018. The simplicial model of Univalent Foundations (after Voevodsky). arxiv:1211.2851.Google ScholarGoogle Scholar
  18. Meven Lennon-Bertrand. 2021. Complete Bidirectional Typing for the Calculus of Inductive Constructions. In 12th International Conference on Interactive Theorem Proving (ITP 2021), Liron Cohen and Cezary Kaliszyk (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 193). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. isbn:978-3-95977-188-7 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ITP.2021.24 Google ScholarGoogle ScholarCross RefCross Ref
  19. Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H.E. Rose and J.C. Shepherdson (Eds.) (Studies in Logic and the Foundations of Mathematics, Vol. 80). Elsevier, 73 – 118. issn:0049-237X https://doi.org/10.1016/S0049-237X(08)71945-1 Google ScholarGoogle ScholarCross RefCross Ref
  20. Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. 2019. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019), Herman Geuvers (Ed.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 131). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 31:1–31:25. isbn:978-3-95977-107-8 issn:1868-8969 https://doi.org/10.4230/LIPIcs.FSCD.2019.31 Google ScholarGoogle ScholarCross RefCross Ref
  21. Andrew Swan. 2016. An algebraic weak factorisation system on 01-substitution sets: a constructive proof. Journal of Logic and Analysis, issn:1759-9008 https://doi.org/10.4115/jla.2016.8.1 Google ScholarGoogle ScholarCross RefCross Ref
  22. The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study. https://homotopytypetheory.org/book/Google ScholarGoogle Scholar
  23. Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical Agda: A Dependently Typed Programming Language with Univalence and Higher Inductive Types. Proc. ACM Program. Lang., 3, ICFP (2019), Article 87, July, 29 pages. https://doi.org/10.1145/3341691 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Vladimir Voevodsky. 2013. A simple type system with two identity types. https://ncatlab.org/homotopytypetheory/files/HTS.pdfGoogle ScholarGoogle Scholar
  25. Vladimir Voevodsky. 2015. A C-system defined by a universe category. Theory Appl. Categ., 30 (2015), No. 37, 1181– 1215. issn:1201-561X http://www.tac.mta.ca/tac/volumes/30/37/30-37abs.htmlGoogle ScholarGoogle Scholar

Index Terms

  1. Observational equality: now for good

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader