skip to main content
research-article
Free Access

Sampling-based robot motion planning

Published:24 September 2019Publication History
Skip Abstract Section

Abstract

To address the computational challenges that arise when planning for robotic systems, traditional CS algorithms, tools, and paradigms must be revisited.

References

  1. Adler, A., Berg, M., Halperin, D. and Solovey, K. Efficient multi-robot motion planning for unlabeled discs in simple polygons. IEEE Trans. Automation Science and Engineering 12, 4 (2015), 1309--1317.Google ScholarGoogle ScholarCross RefCross Ref
  2. Aggarwal, C.C., Hinneburg, A. and Keim, D.A. On the surprising behavior of distance metrics in high dimensional space. In Proceedings of the Intern. Conference on Database Theory. Springer, 2001, 420--434.Google ScholarGoogle ScholarCross RefCross Ref
  3. Alterovitz, R., Koenig, S. and Likhachev, M. Robot planning in the real world: Research challenges and opportunities. AI Magazine 37, 2 (2016), 76--84.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arslan, O. and Tsiotras, P. Use of relaxation methods in sampling-based algorithms for optimal motion planning. ICRA, 2013, 2421--2428.Google ScholarGoogle Scholar
  5. Atariah, D. and Rote, G. Configuration space visualization (video). SOCG, 2012 http://computational-geometry.org/SoCG-videos/socg12video/Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Boeuf, A., Cortés, J., Alami, R. and Siméon, T. Enhancing sampling-based kinodynamic motion planning for quadrotors. IROS, 2015, 2447--2452.Google ScholarGoogle Scholar
  7. Choudhury, S., Srinivasa, S. and Scherer, S. Bayesian active edge evaluation on expensive graphs. IJCAI, 2018, 4890--4897.Google ScholarGoogle Scholar
  8. Dragan, A.D., Lee, K.C.T. and Srinivasa, S.S. Legibility and predictability of robot motion. HRI, 2013, 301--308.Google ScholarGoogle Scholar
  9. Ekenna, C., Jacobs, S.A., Thomas, S. and Amato, N.M. Adaptive neighbor connection for PRMs: A natural fit for heterogeneous environments and parallelism. IROS, 2013, 1249--1256.Google ScholarGoogle Scholar
  10. Gammell, J.D., Barfoot, T.D., and Srinivasa, S.S. Informed sampling for asymptotically optimal path planning. IEEE Trans. Robotics 34, 4 (2018), 966--984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gammell, J.D., Srinivasa, S.S. and Barfoot, T.D. Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. ICRA, 2015, 3067--3074.Google ScholarGoogle Scholar
  12. Haghtalab, N., Mackenzie, S., Procaccia, A.D., Salzman, O. and Srinivasa, S.S. The provable virtue of laziness in motion planning. ICAPS, 2018, 106--113.Google ScholarGoogle Scholar
  13. Halperin, D., Salzman, O. and Sharir, M. Algorithmic motion planning. Handbook of Discrete and Computational Geometry (3rd ed.), J.E. Goodman, C.D. Toth, J. O'Rourke (Eds.). CRC Press, Inc., 2017, 1307--1338.Google ScholarGoogle Scholar
  14. Holladay, R.M., Salzman, O. and Srinivasa, S.S. Minimizing task space Frechet error via efficient incremental graph search. IEEE Robotics and Automation Letters (2019). To appear.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hsu, D., Latombe, J., and Kurniawati, H. On the probabilistic foundations of probabilistic roadmap planning. I. J. Robotics Res. 25, 7 (2006), 627--643.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ichnowski, J. and Alterovitz, R. Fast nearest neighbor search in SE(3) for sampling-based motion planning. WAFR, 2014, 197--214.Google ScholarGoogle Scholar
  17. Ichnowski, J. and Alterovitz, R. Scalable multicore motion planning using lock-free concurrency. IEEE Trans. Robotics 30, 5 (2014), 1123--1136.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ichter, B., Harrison, J. and Pavone, M. Learning sampling distributions for robot motion planning. ICRA, 2018, 7087--7094.Google ScholarGoogle Scholar
  19. Janson, L., Ichter, B., and Pavone, M. Deterministic sampling-based motion planning: Optimality, complexity, and performance. I. J. Robotics Res. 37, 1 (2018), 46--61.Google ScholarGoogle Scholar
  20. Janson, L., Schmerling, E., Clark, A.A. and Pavone M. Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions. I. J. Robotics Res. 34, 7 (2015), 883--921.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Karaman, S. and Frazzoli, E. Sampling-based algorithms for optimal motion planning. I. J. Robotics Res. 30, 7 (2011), 846--894.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kehoe, B., Patil, S., Abbeel, P., and Goldberg, K. A survey of research on cloud robotics and automation. IEEE Trans. Automation Science and Engineering 12, 2 (2015), 398--409.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kleinbort, M., Salzman, O. and Halperin, D. Collision detection or nearest-neighbor search? On the computational bottleneck in sampling-based motion planning. WAFR, 2016.Google ScholarGoogle Scholar
  24. Kunz, T., Thomaz, A. and Christensen, H. Hierarchical rejection sampling for informed kinodynamic planning in high-dimensional spaces. ICRA, 2016, 89--96.Google ScholarGoogle Scholar
  25. LaValle, S.M. Planning Algorithms. Cambridge University Press, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  26. LaValle, S.M. Motion planning: The essentials. IEEE Robotics & Automation Mag. 18, 1 (2011), 79--89.Google ScholarGoogle Scholar
  27. LaValle, S.M., Branicky, M.S. and Lindemann, S.R. On the relationship between classical grid search and probabilistic roadmaps. I. J. Robotics Res. 23, 7--8 (2004), 673--692.Google ScholarGoogle ScholarCross RefCross Ref
  28. Li, Y., Littlefield, Z. and Bekris, K.E. Asymptotically optimal sampling-based kinodynamic planning. I. J. Robotics Res. 35, 5 (2016), 528--564.Google ScholarGoogle Scholar
  29. Lynch, K.M. and Park, F.C. Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, 2017; http://hades.mech.northwestern.edu/index.php/Modern_Robotics.Google ScholarGoogle Scholar
  30. Mandalika, A., Salzman, O. and Srinivasa, S.S. Lazy receding horizon A* for efficient path planning in graphs with expensive-to-evaluate edges. ICAPS, 2018, 476--484.Google ScholarGoogle Scholar
  31. Murray, S., Floyd-Jones, W., Qi, Y., Sorin, D.J. Konidaris, G. Robot motion planning on a chip. RSS, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  32. Plaku, E. and Kavraki, L.E. Quantitative analysis of nearest-neighbors search in high-dimensional sampling-based motion planning. WAFR, 2006, 3--18.Google ScholarGoogle Scholar
  33. Salzman, O., Hemmer, M. and Halperin, D. On the power of manifold samples in exploring configuration spaces and the dimensionality of narrow passages. IEEE Trans. Automation Science and Engineering 12, 2 (2015), 529--538.Google ScholarGoogle ScholarCross RefCross Ref
  34. Schulz, A., Wang, H., Grinspun, E., Solomon, J. and Matusik, W. Interactive exploration of design tradeoffs. ACM Trans. Graph. 37, 4 (2018), 131:1--131:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Solovey, K. and Kleinbort, M. The critical radius in sampling-based motion planning. RSS, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  36. Solovey, K., Salzman, O. and Halperin, D. New perspective on sampling-based motion planning via random geometric graphs. I. J. Robotics Res. 37, 10 (2018), 1117--1133.Google ScholarGoogle Scholar
  37. Stappen, A., Halperin, D. and Overmars, M.H. The complexity of the free space for a robot moving amidst fat obstacles. Computational Geometry 3, 6 (1993), 353--373.Google ScholarGoogle Scholar
  38. Vernaza, P. and Lee, D.D. Learning and exploiting low-dimensional structure for efficient holonomic motion planning in high-dimensional spaces. I. J. Robotics Res. 31, 14 (2012), 1739--1760.Google ScholarGoogle Scholar
  39. Xie, C., van den Berg, J.P., Patil, S. and Abbeel, P. Toward asymptotically optimal motion planning for kinodynamic systems using a two-point boundary value problem solver. ICRA, 2015, 4187--4194.Google ScholarGoogle Scholar
  40. Zhou, B., Chiang, Y. and Yap, C. Soft subdivision motion planning for complex planar robots. ESA, 2018, 73:1--73:14.Google ScholarGoogle Scholar

Index Terms

  1. Sampling-based robot motion planning

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Communications of the ACM
          Communications of the ACM  Volume 62, Issue 10
          October 2019
          89 pages
          ISSN:0001-0782
          EISSN:1557-7317
          DOI:10.1145/3363418
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 24 September 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Popular
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format