skip to main content
research-article

Tight Lower Bounds for the Complexity of Multicoloring

Authors Info & Claims
Published:02 April 2019Publication History
Skip Abstract Section

Abstract

In the multicoloring problem, also known as (a:b)-coloring or b-fold coloring, we are given a graph G and a set of a colors, and the task is to assign a subset of b colors to each vertex of G so that adjacent vertices receive disjoint color subsets. This natural generalization of the classic coloring problem (the b=1 case) is equivalent to finding a homomorphism to the Kneser graph KGa,b and gives relaxations approaching the fractional chromatic number.

We study the complexity of determining whether a graph has an (a:b)-coloring. Our main result is that this problem does not admit an algorithm with runtime f(b)ċ 2o(log bn for any computable f(b) unless the Exponential Time Hypothesis (ETH) fails. A (b+1)nċ poly(n)-time algorithm due to Nederlof [33] shows that this is tight. A direct corollary of our result is that the graph homomorphism problem does not admit a 2O(n+h) algorithm unless the ETH fails even if the target graph is required to be a Kneser graph. This refines the understanding given by the recent lower bound of Cygan et al. [9].

The crucial ingredient in our hardness reduction is the usage of detecting matrices of Lindström [28], which is a combinatorial tool that, to the best of our knowledge, has not yet been used for proving complexity lower bounds. As a side result, we prove that the runtime of the algorithms of Abasi et al. [1] and of Gabizon et al. [14] for the r-monomial detection problem are optimal under the ETH.

References

  1. Hasan Abasi, Nader H. Bshouty, Ariel Gabizon, and Elad Haramaty. 2014. On r-simple k-path. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS’15), Giuseppe F. Italiano, Giovanni Pighizzini, and Donald T. Sannella (Eds.), Vol. 8635. Springer, Berlin, 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  2. Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. 2009. Set partitioning via inclusion-exclusion. SIAM J. Comput. 39, 2 (2009), 546--563. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Nader H. Bshouty. 2009. Optimal algorithms for the coin weighing problem with a spring scale. In Proceedings of the 22nd Conference on Learning Theory. McGill University, 1--10. https://www.cs.mcgill.ca/∼colt2009/proceedings.html.Google ScholarGoogle Scholar
  4. Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. 1995. On the structure of parameterized problems in NP. Inf. Comput. 123, 1 (1995), 38--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Marie G. Christ, Lene M. Favrholdt, and Kim S. Larsen. 2016. Online multi-coloring with advice. In Proceedings of the 14th International Workshop on Approximation and Online Algorithms (WAOA’16), Klaus Jansen and Monaldo Mastrolilli (Eds.), Vol. 8952. Springer, Berlin, 83--94.Google ScholarGoogle Scholar
  6. Vasek Chvátal. 1983. Mastermind. Combinatorica 3, 3 (1983), 325--329.Google ScholarGoogle ScholarCross RefCross Ref
  7. V. Chvátal, M. R. Garey, and D. S. Johnson. 1978. Two results concerning multicoloring. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16), Robert Krauthgamer (Ed.), Vol. 2. Elsevier, 151--154.Google ScholarGoogle Scholar
  8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms. The MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socala. 2017. Tight lower bounds on graph embedding problems. J. ACM 64, 3 (2017), 18:1--18:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Reinhard Diestel. 2010. Graph Theory. Springer-Verlag Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. David C. Fisher. 1995. Fractional colorings with large denominators. J. Graph Theory 20, 4 (1995), 403--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. 2007. Exact algorithms for graph homomorphisms. Theory Comput. Syst. 41, 2 (2007), 381--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ariel Gabizon, Daniel Lokshtanov, and Michal Pilipczuk. 2015. Fast algorithms for parameterized problems with relaxed disjointness constraints. In Proceedings of the 23rd Annual European Symposium on Algorithms (ESA’15), Nikhil Bansal and Irene Finocchi (Eds.), Vol. 9294. Springer, Berlin, 545--556.Google ScholarGoogle ScholarCross RefCross Ref
  15. Chris Godsil and Gordon F. Royle. 2001. Algebraic Graph Theory. Springer.Google ScholarGoogle Scholar
  16. Vladimir Grebinski and Gregory Kucherov. 2000. Optimal reconstruction of graphs under the additive model. Algorithmica 28, 1 (2000), 104--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Martin Grötschel, László Lovász, and Alexander Schrijver. 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 2 (1981), 169--197. Corrigendum available at:Google ScholarGoogle ScholarCross RefCross Ref
  18. Magnús M. Halldórsson and Guy Kortsarz. 2004. Multicoloring: Problems and techniques. In Proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science (MFCS’13), Krishnendu Chatterjee and Jirí Sgall (Eds.), Vol. 3153. Springer, Berlin, 25--41.Google ScholarGoogle Scholar
  19. Magnús M. Halldórsson, Guy Kortsarz, Andrzej Proskurowski, Ravit Salman, Hadas Shachnai, and Jan Arne Telle. 2003. Multicoloring trees. Inf. Comput. 180, 2 (2003), 113--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Frédéric Havet. 2001. Channel assignment and multicolouring of the induced subgraphs of the triangular lattice. Discrete Math. 233, 1--3 (2001), 219--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of H-coloring. J. Comb. Theory, Ser. B 48, 1 (1990), 92--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Qiang-Sheng Hua, Yuexuan Wang, Dongxiao Yu, and Francis C. M. Lau. 2010. Dynamic programming based algorithms for set multicover and multiset multicover problems. Theor. Comput. Sci. 411, 26--28 (2010), 2467--2474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001), 367--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63, 4 (2001), 512--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mustapha Kchikech and Olivier Togni. 2006. Approximation algorithms for multicoloring planar graphs and powers of square and triangular meshes. Discrete Math. Theor. Comput. Sci. 8, 1 (2006), 159--172.Google ScholarGoogle Scholar
  26. Fabian Kuhn. 2009. Local multicoloring algorithms: Computing a nearly-optimal TDMA schedule in constant time. In Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS’09), Susanne Albers and Jean-Yves Marion (Eds.), Vol. 3. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Germany, 613--624.Google ScholarGoogle Scholar
  27. Wensong Lin. 2008. Multicoloring and Mycielski construction. Discrete Math. 308, 16 (2008), 3565--3573. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Bernt Lindström. 1965. On a combinatorial problem in number theory. Canad. Math. Bull 8, 4 (1965), 477--490.Google ScholarGoogle ScholarCross RefCross Ref
  29. László Lovász. 1978. Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory, Ser. A 25, 3 (1978), 319--324.Google ScholarGoogle ScholarCross RefCross Ref
  30. Dániel Marx. 2002. The complexity of tree multicolorings. In Proceedings of the 27th International Symposium on Mathematical Foundations of Computer Science (MFCS’02), Krzysztof Diks and Wojciech Rytter (Eds.), Vol. 2420. Springer, 532--542. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Colin McDiarmid and Bruce A. Reed. 2000. Channel assignment and weighted coloring. Networks 36, 2 (2000), 114--117.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. W. Moon and L. Moser. 1965. On cliques in graphs. Israel J. Math. 3, 1 (1965), 23--28.Google ScholarGoogle ScholarCross RefCross Ref
  33. Jesper Nederlof. 2008. Inclusion exclusion for hard problems. Master’s thesis. Department of Information and Computer Science, Utrecht University. Retrieved February 26, 2019 from http://www.win.tue.nl/jnederlo/MScThesis.pdf.Google ScholarGoogle Scholar
  34. K. S. Sudeep and Sundar Vishwanathan. 2005. A technique for multicoloring triangle-free hexagonal graphs. Discrete Math. 300, 1--3 (2005), 256--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Craig A. Tovey. 1984. A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8, 1 (1984), 85--89.Google ScholarGoogle ScholarCross RefCross Ref
  36. Magnus Wahlström. 2011. New plain-exponential time classes for graph homomorphism. Theory Comput. Syst. 49, 2 (2011), 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Tight Lower Bounds for the Complexity of Multicoloring

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Computation Theory
            ACM Transactions on Computation Theory  Volume 11, Issue 3
            September 2019
            164 pages
            ISSN:1942-3454
            EISSN:1942-3462
            DOI:10.1145/3323875
            Issue’s Table of Contents

            Copyright © 2019 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 2 April 2019
            • Accepted: 1 December 2018
            • Revised: 1 October 2018
            • Received: 1 November 2017
            Published in toct Volume 11, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format