skip to main content
research-article

Exposing Inter-process Information for Efficient PDES of Spatial Stochastic Systems on Multicores

Published:02 April 2019Publication History
Skip Abstract Section

Abstract

We present a new approach for efficient process synchronization in parallel discrete event simulation on multicore computers. We aim specifically at simulation of spatially extended stochastic system models where time intervals between successive inter-process events are highly variable and without lower bounds: This includes models governed by the mesoscopic Reaction-Diffusion Master Equation (RDME). A central part of our approach is a mechanism for optimism control, in which each process disseminates accurate information about timestamps of its future outgoing interprocess events to its neighbours. This information gives each process a precise basis for deciding when to pause local processing to reduce the risk of expensive rollbacks caused by future “delayed” incoming events. We apply our approach to a natural parallelization of the Next Subvolume Method (NSM) for simulating systems obeying RDME. Since this natural parallelization does not expose accurate timestamps of future interprocess events, we restructure it to expose such information, resulting in a simulation algorithm called Refined Parallel NSM (Refined PNSM). We have implemented Refined PNSM in a parallel simulator for spatial extended Markovian processes. On 32 cores, it achieves an efficiency ranging between 43--95% for large models, and on average 37% for small models, compared to an efficient sequential simulation without any code for parallelization. It is shown that the gain of restructuring the naive parallelization into Refined PNSM more than outweighs its overhead. We also show that our resulting simulator is superior in performance to existing simulators on multicores for comparable models.

References

  1. P. Bauer and S. Engblom. 2015. Sensitivity estimation and inverse problems in spatial stochastic models of chemical kinetics. Lecture Notes in Computational Science and Engineering, Vol. 103. Springer, 519--527.Google ScholarGoogle Scholar
  2. P. Bauer and S. Engblom. 2017. The URDME Manual version 1.3. Technical Report 2017-003. Dept of Information Technology, Uppsala University. Retrieved from http://arxiv.org/abs/0902.2912.Google ScholarGoogle Scholar
  3. P. Bauer, J. Lindén, S. Engblom, and B. Jonsson. 2015. Efficient inter-process synchronization for parallel discrete event simulation on multicores. In Proceedings of the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’15). ACM, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. O. G. Berg and P. H. von Hippel. 1985. Diffusion-controlled macromolecular interactions. Ann. Rev. Biophys. Chem. 14, 1 (1985), 131--160.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. A. Gibson and J. Bruck. 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 9 (2000), 1876--1889.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. D. Carothers, D. Bauer, and S. Pearce. 2000. ROSS: A high-performance, low memory, modular time warp system. In Proceedings of the 14th Workshop on Parallel and Distributed Simulation. IEEE, 53--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L.-L. Chen, Y.-S. Lu, Y. P. Yao, S. L. Peng, and L.-D. Wu. 2011. A well-balanced time warp system on multi-core environments. In Proceedings of the 25th Workshop on Parallel and Distributed Simulation. IEEE, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. R. Das. 2000. Adaptive protocols for parallel discrete event simulation. J. Oper. Res. Soc. 51, 4 (2000), 385--394.Google ScholarGoogle ScholarCross RefCross Ref
  9. E. Deelman and B. K. Szymanski. 1997. Breadth-first rollback in spatially explicit simulations. In Proceedings of the 11th Workshop on Parallel and Distributed Simulation. IEEE, 124--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Dematté and T. Mazza. 2008. On parallel stochastic simulation of diffusive systems. In Proceedings of the 6th Int’l Conference on Computational Methods in Systems Biology (CMSB’08). Springer-Verlag, Berlin, Heidelberg, 191--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. Drawert, S. Engblom, and A. Hellander. 2012. URDME: A modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst. Biol. 6, 76 (2012), 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Elf and M. Ehrenberg. 2004. Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol. 1, 2 (2004), 230--236.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Engblom. 2008. Numerical Solution Methods in Stochastic Chemical Kinetics. Ph.D. Dissertation. Uppsala University.Google ScholarGoogle Scholar
  14. D. Fange and J. Elf. 2006. Noise-induced min phenotypes in E. coli. PLoS Comput. Biol. 2, 6 (2006), e80.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Ferscha. 1995. Probabilistic adaptive direct optimism control in time warp. In Proceedings of the 9th Workshop on Parallel and Distributed Simulation. IEEE, 120--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. M. Fujimoto. 1990. Parallel discrete event simulation. Commun. ACM 33, 10 (1990), 30--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. M. Fujimoto. 2016. Research challenges in parallel and distributed simulation. ACM Trans. Model. Comput. Simul. 26, 4 (2016), 22:1--22:29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. W. Gardiner. 2007. Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer.Google ScholarGoogle Scholar
  19. D. T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 25 (1977), 2340--2361.Google ScholarGoogle ScholarCross RefCross Ref
  20. D. T. Gillespie. 1992. A rigorous derivation of the chemical master equation. Phys. A 188 (1992), 404--425.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Jafer, Q. Liu, and G. A. Wainer. 2013. Synchronization methods in parallel and distributed discrete-event simulation. Simul. Model. Pract. Th. 30 (2013), 54--73.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. R. Jefferson. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (1985), 404--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Jeschke, R. Ewald, A. Park, R. Fujimoto, and A. M. Uhrmacher. 2008. A parallel and distributed discrete event approach for spatial cell-biological simulations. SIGMETRICS Perf. Eval. Rev. 35 (2008), 22--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Karypis and V. Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 1 (1998), 359--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. J. Lawson, B. Drawert, M. Khammash, L. Petzold, and T. M. Yi. 2013. Spatial stochastic dynamics enable robust cell polarization. PLoS Comp. Biol. 9, 7 (2013), e1003139.Google ScholarGoogle ScholarCross RefCross Ref
  26. Z. Lin, C. Tropper, R. A. McDougal, M. N. I. Patoary, W. W. Lytton, Y. Yao, and M. L. Hines. 2017. Multithreaded stochastic PDES for reactions and diffusions in neurons. ACM Trans. Model. Comput. Simul. 27, 2 (2017), 7:1--7:27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Lindén, P. Bauer, S. Engblom, and B. Jonsson. 2017. Exposing inter-process information for efficient parallel discrete event simulation of spatial stochastic systems. In Proceedings of the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’17). ACM, 53--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Liu and D. Nicol. 2002. Lookahead revisited in wireless network simulations. In Proceedings of the 16th Workshop on Parallel and Distributed Simulation. IEEE, 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Lubachevsky, A. Schwartz, and A. Weiss. 1991. An analysis of rollback-based simulation. ACM Trans. Model. Comput. Simul. 1, 2 (1991), 154--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. B. D. Lubachevsky. 1988. Efficient parallel simulations of dynamic Ising spin systems. J. Comput. Phys. 75, 1 (1988), 103--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. N. Marziale, F. Nobilia, A. Pellegrini, and F. Quaglia. 2016. Granular time warp objects. In Proceedings of the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’16). ACM, 57--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Matsumoto and T. Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 1 (Jan. 1998), 3--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Misra. 1986. Distributed discrete-event simulation. ACM Comput. Surv. 18, 1 (1986), 39--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Pellegrini and F. Quaglia. 2015. NUMA time warp. In Proceedings of the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’15). ACM, 59--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Pellegrini, R. Vitali, S. Peluso, and F. Quaglia. 2012. Transparent and efficient shared-state management for optimistic simulations on multi-core machines. In Proceedings of the International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’12). IEEE, 134--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P. L. Reiher, F. Wieland, and D. Jefferson. 1989. Limitation of optimism in the time warp operating system. In Proceedings of the 21st Winter Simulation Conference. ACM, 765--770. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. B. Schinazi. 1997. Predator-prey and host-parasite spatial stochastic models. Ann. Appl. Probab. 7, 1 (1997), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  38. L. M. Sokol, J. B. Weissman, and P. A. Mutchler. 1991. MTW: An empirical performance study. In Proceedings of the 23rd Winter Simulation Conference. IEEE, 557--563. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Srinivasan and P. F. Reynolds Jr. 1998. Elastic time. ACM Trans. Model. Comput. Simul. 8, 2 (1998), 103--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. S. Steinman. 1993. Breathing time warp. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation. ACM, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Sturrock, A. Hellander, A. Matzavinos, and M. A. J. Chaplain. 2013. Spatial stochastic modelling of the Hes1 gene regulatory network: Intrinsic noise can explain heterogeneity in embryonic stem cell differentiation. J. R. Soc. Interface 10, 80 (2013), 20120988.Google ScholarGoogle ScholarCross RefCross Ref
  42. N. G. van Kampen. 2004. Stochastic Processes in Physics and Chemistry (2nd ed.). Elsevier.Google ScholarGoogle Scholar
  43. B. Wang, B. Hou, F. Xing, and Y. Yao. 2011. Abstract next subvolume method: A logical process-based approach for spatial stochastic simulation of chemical reactions. Comput. Biol. Chem. 35, 3 (2011), 193--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Wang, D. Jagtap, N. B. Abu-Ghazaleh, and D. Ponomarev. 2014. Parallel discrete event simulation for multi-core systems: Analysis and optimization. IEEE Trans. Par. Distr. Syst. 25, 6 (2014), 1574--1584. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Exposing Inter-process Information for Efficient PDES of Spatial Stochastic Systems on Multicores

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Modeling and Computer Simulation
          ACM Transactions on Modeling and Computer Simulation  Volume 29, Issue 2
          Special Issue on PADS 2017
          April 2019
          105 pages
          ISSN:1049-3301
          EISSN:1558-1195
          DOI:10.1145/3320014
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 April 2019
          • Accepted: 1 November 2018
          • Revised: 1 July 2018
          • Received: 1 November 2017
          Published in tomacs Volume 29, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format