skip to main content
research-article
Public Access

DFR: An Energy-efficient Analog Delay Feedback Reservoir Computing System for Brain-inspired Computing

Authors Info & Claims
Published:06 December 2018Publication History
Skip Abstract Section

Abstract

Neuromorphic computing, which is built on a brain-inspired silicon chip, is uniquely applied to keep pace with the explosive escalation of algorithms and data density on machine learning. Reservoir computing, an emerging computing paradigm based on the recurrent neural network with proven benefits across multifaceted applications, offers an alternative training mechanism only at the readout stage. In this work, we successfully design and fabricate an energy-efficient analog delayed feedback reservoir (DFR) computing system, which is built upon a temporal encoding scheme, a nonlinear transfer function, and a dynamic delayed feedback loop. Measurement results demonstrate its high energy efficiency with rich dynamic behaviors, making the designed system a candidate for low power embedded applications. The system performance, as well as the robustness, are studied and analyzed through the Monte Carlo simulation. The chaotic time series prediction benchmark, NARMA10, is examined through the proposed DFR computing system, and exhibits a 36%−85% reduction on the error rate compared to state-of-the-art DFR computing system designs. To the best of our knowledge, our work represents the first analog integrated circuit (IC) implementation of the DFR computing system.

References

  1. Abdulrahman Alalshekmubarak and Leslie S. Smith. 2014. On improving the classification capability of reservoir computing for arabic speech recognition. In Proceedings of the International Conference on Artificial Neural Networks. Springer, 225--232.Google ScholarGoogle Scholar
  2. Miquel L. Alomar, Vincent Canals, Nicolas Perez-Mora, Víctor Martínez-Moll, and Josep L. Rosselló. 2016. FPGA-based stochastic echo state networks for time-series forecasting. Comput. Intell. Neurosci. 2016 (2016), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Pablo Amil, Cecilia Cabeza, and Arturo C. Marti. 2015. Exact discrete-time implementation of the Mackey--glass delayed model. IEEE Trans. Circ. Syst. 62, 681--685.Google ScholarGoogle Scholar
  4. Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan Danckaert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio R. Mirasso, and Ingo Fischer. 2011. Information processing using a single dynamical node as complex system. Nature Commun. 2, 468.Google ScholarGoogle ScholarCross RefCross Ref
  5. Kangjun Bai, Jialing Li, Kian Hamedani, and Yang Yi. 2018. Enabling a new era of brain-inspired computing: Energy-efficient spiking neural network with ring topology. In Proceedings of the 55th Annual Design Automation Conference. ACM, 166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kangjun Bai and Yang Yi. 2018. A path to energy-efficient spiking delayed feedback reservoir computing system for brain-inspired neuromorphic processors. In Proceedings of 19th International Symposium in Quality Electronic Design (ISQED’18).Google ScholarGoogle ScholarCross RefCross Ref
  7. Rezaul Begg and Joarder Kamruzzaman. 2005. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J. Biomech. 38 401--408.Google ScholarGoogle Scholar
  8. Anne Beuter, Jacques Bélair, and Christiane Labrie. 1993. Feedback and delays in neurological diseases: A modeling study using dynamical systems. Bull. Math. Biol. 55, 525--541.Google ScholarGoogle Scholar
  9. Kristine E. Callan, Lucas Illing, Zheng Gao, Daniel J. Gauthier, and Eckehard Schöll. 2010. Broadband chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 104, 113901.Google ScholarGoogle ScholarCross RefCross Ref
  10. Qiuwen Chen, Qinru Qiu, Hai Li, and Qing Wu. 2013. A neuromorphic architecture for anomaly detection in autonomous large-area traffic monitoring. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press, 202--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Myonglae Chu, Byoungho Kim, Sangsu Park, Hyunsang Hwang, Moongu Jeon, Byoung Hun Lee, and Byung-Geun Lee. 2015. Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans. Industr. Electron. 62, 2410--2419.Google ScholarGoogle ScholarCross RefCross Ref
  12. Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, and Shweta Jain. 2018. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82--99.Google ScholarGoogle ScholarCross RefCross Ref
  13. Miyuru Dayarathna, Yonggang Wen, and Rui Fan. 2016. Data center energy consumption modeling: A survey. IEEE Commun. Surveys Tutor. 18, 732--794.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sukru Burc Eryilmaz, Siddharth Joshi, Emre Neftci, Weier Wan, Gert Cauwenberghs, and H.-S. Philip Wong. 2016. Neuromorphic architectures with electronic synapses. In Proceedings of the 17th International Symposium on Quality Electronic Design (ISQED’16). IEEE, 118--123.Google ScholarGoogle ScholarCross RefCross Ref
  15. Steve K. Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, and Dharmendra S. Modha. 2015. Backpropagation for energy-efficient neuromorphic computing. In Advances in Neural Information Processing Systems. NIPS, 1117--1125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Arfan Ghani. 2010. Neuro-inspired speech recognition based on reservoir computing. In Advances in Speech Recognition, InTech.Google ScholarGoogle Scholar
  17. C. Lee Giles and Tom Maxwell. 1987. Learning, invariance, and generalization in high-order neural networks. Appl. Optics 26, 4972--4978.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning, MIT Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Alireza Goudarzi, Peter Banda, Matthew R. Lakin, Christof Teuscher, and Darko Stefanovic. 2014. A comparative study of reservoir computing for temporal signal processing. Arxiv preprint Arxiv:1401.2224.Google ScholarGoogle Scholar
  20. Alireza Goudarzi, Matthew R. Lakin, and Darko Stefanovic. 2014. Reservoir computing approach to robust computation using unreliable nanoscale networks. In Proceedings of the International Conference on Unconventional Computation and Natural Computation. Springer, 164--176.Google ScholarGoogle ScholarCross RefCross Ref
  21. Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. 2006. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning. ACM, 369--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lyudmila Grigoryeva, Julie Henriques, Laurent Larger, and Juan-Pablo Ortega. 2015. Optimal nonlinear information processing capacity in delay-based reservoir computers, Sci. Rep. 5, 12858.Google ScholarGoogle Scholar
  23. Hermann Haken. 2002. Brain dynamics (synchronisation and activity patterns in pulse-coupled neural nets with delays and noise). Springer Series in Synergetics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Simon S. Haykin. 2001. Neural Networks: A Comprehensive Foundation, Tsinghua University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rainer Hegger, Martin J. Bünner, Holger Kantz, and Antonino Giaquinta. 1998. Identifying and modeling delay feedback systems. Phys. Rev. Lett. 81, 558.Google ScholarGoogle ScholarCross RefCross Ref
  26. Xavier Hinaut and Peter F. Dominey. 2012. On-line processing of grammatical structure using reservoir computing. In Proceedings of the International Conference on Artificial Neural Networks. Springer, 596--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M. Grafals, Noraica Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R. Stanley Williams. 2016. Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication. In Proceedings of the 53rd Annual Design Automation Conference. ACM, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kensuke Ikeda and Kenji Matsumoto. 1987. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D: Nonlin. Phenom. 29, 223--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Herbert Jaeger. 2001a. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. German National Research Center for Information Technology GMD Technical Report 148 13, Bonn, Germany.Google ScholarGoogle Scholar
  30. Herbert Jaeger. 2001b. Short Term Memory in Echo State Networks, GMD-Forschungszentrum Informationstechnik.Google ScholarGoogle Scholar
  31. Herbert Jaeger. 2007. Echo state network. Scholarpedia 2, 2330.Google ScholarGoogle ScholarCross RefCross Ref
  32. Herbert Jaeger and Harald Haas. 2004. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication'. Science 304, 78--80.Google ScholarGoogle ScholarCross RefCross Ref
  33. Yu Jin, Qingchun Zhao, Hongxi Yin, and Hehe Yue. 2015. Handwritten numeral recognition utilizing reservoir computing subject to optoelectronic feedback. In Proceedings of the 11th International Conference on Natural Computation (ICNC’15). IEEE, 1165--1169.Google ScholarGoogle Scholar
  34. Leandro Junges and Jason A. C. Gallas. 2012. Intricate routes to chaos in the Mackey--glass delayed feedback system. Phys. Lett. A, 376, 2109--2116.Google ScholarGoogle ScholarCross RefCross Ref
  35. Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, and A. James Hudspeth. 2000. Principles of Neural Science, McGraw-Hill, New York.Google ScholarGoogle Scholar
  36. Laszlo B. Kish. 2002. End of Moore's law: Thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 305, 144--149.Google ScholarGoogle ScholarCross RefCross Ref
  37. Christof Koch and Idan Segev. 2000. The role of single neurons in information processing. Nature Neurosci. 3, 1171--1177.Google ScholarGoogle ScholarCross RefCross Ref
  38. Shumin Kong and Masahiro Takatsuka. 2017. Hexpo: A vanishing-proof activation function. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’17). IEEE, 2562--2567.Google ScholarGoogle ScholarCross RefCross Ref
  39. Laurent Larger and John M. Dudley. 2010. Nonlinear dynamics: Optoelectronic chaos. Nature 465, 41--42.Google ScholarGoogle ScholarCross RefCross Ref
  40. Laurent Larger, Miguel C. Soriano, Daniel Brunner, Lennert Appeltant, Jose M. Gutiérrez, Luis Pesquera, Claudio R. Mirasso, and Ingo Fischer. 2012. Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing. Optics Express 20, 3241--3249.Google ScholarGoogle ScholarCross RefCross Ref
  41. Robert Legenstein and Wolfgang Maass. 2007a. Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 20, 323--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Robert Legenstein and Wolfgang Maass. 2007b. What makes a dynamical system computationally powerful. New Directions in Statistical Signal Processing: From Systems to Brain. 127--154.Google ScholarGoogle Scholar
  43. Xiaowei Lin, Zehong Yang, and Yixu Song. 2011. Intelligent stock trading system based on improved technical analysis and echo state network. Expert Syst. Appl. 38, 11347--11354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Mantas Lukoševicius. 2012. Reservoir computing and self-organized neural hierarchies. Jacobs University, Bremen.Google ScholarGoogle Scholar
  45. Wolfgang Maass, Thomas Natschläger, and Henry Markram. 2002. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 14 2531--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. Mayberry. 2017. Intel's new self-learning chip promises to accelerate artificial intelligence. Intel.Google ScholarGoogle Scholar
  47. Carver Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 1629--1636.Google ScholarGoogle ScholarCross RefCross Ref
  48. Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, and Yutaka Nakamura. 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668--673.Google ScholarGoogle ScholarCross RefCross Ref
  49. John G. Milton. 2015. Time delays and the control of biological systems. IFAC PapersOnLine 48, 87--92.Google ScholarGoogle ScholarCross RefCross Ref
  50. Dharmendra S. Modha. 2017. Introducing a brain-inspired computer. Retrieved from http://www.research.Ibm.com/articles/brain-chip.shtml.Google ScholarGoogle Scholar
  51. D. J. Myers and R. A. Hutchinson. 1989. Efficient implementation of piecewise linear activation function for digital VLSI neural networks. Electron. Lett. 25, 1662.Google ScholarGoogle ScholarCross RefCross Ref
  52. Nasser M. Nasrabadi. 2007. Pattern recognition and machine learning. J. Electron. Imag. 16, 049901.Google ScholarGoogle ScholarCross RefCross Ref
  53. Silvia Ortín and Luis Pesquera. 2017. Reservoir computing with an ensemble of time-delay reservoirs. Cogn. Comput. 9, 3 (2017), 327--336.Google ScholarGoogle ScholarCross RefCross Ref
  54. G. Overton. 2014. Photonic reservoir computing--A new tool for speech recognition. Retrieval from https://www.laserfocusworld.com/articles/2014/09/photonic-reservoir-computing-a-new-tool-for-speech-recognition.html.Google ScholarGoogle Scholar
  55. Yvan Paquot, Francois Duport, Antoneo Smerieri, Joni Dambre, Benjamin Schrauwen, Marc Haelterman, and Serge Massar. 2012. Optoelectronic reservoir computing. Sci. Rep. 2, 287.Google ScholarGoogle Scholar
  56. Ali Rodan and Peter Tino. 2011. Minimum complexity echo state network. IEEE Trans. Neural Netw. 22, 131--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Chih-Tang Sah. 1991. Fundamentals of Solid State Electronics, World Scientific Publishing Company, Singapore.Google ScholarGoogle Scholar
  58. Benjamin Schrauwen, Michiel D'Haene, David Verstraeten, and Jan Van Campenhout. 2008. Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw. 21, 511--523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Benjamin Schrauwen and Robert Legenstein. 2010. Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural computation 22, 5 (2010), 1272--1311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Benjamin Schrauwen and Dirk Stroobandt. 2008. Using reservoir computing in a decomposition approach for time series prediction. In Proceedings of the European Symposium on Time Series Prediction (ESTSP’08). Multiprint Oy/Otamedia, 149--158.Google ScholarGoogle Scholar
  61. Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. 2007. An overview of reservoir computing: Theory, applications and implementations. In Proceedings of the 15th European Symposium on Artificial Neural Networks. 471--482.Google ScholarGoogle Scholar
  62. Mark D. Skowronski and John G. Harris. 2007. Automatic speech recognition using a predictive echo state network classifier. Neural Netw. 20 414--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Miguel C. Soriano, Silvia Ortín, Lars Keuninckx, Lennert Appeltant, Jan Danckaert, Luis Pesquera, and Guy Van derSande. 2015. Delay-based reservoir computing: Noise effects in a combined analog and digital implementation. IEEE Trans. Neural Netw.d Learn. Syst. 26, 388--393.Google ScholarGoogle ScholarCross RefCross Ref
  64. Kristof Vandoorne, Wouter Dierckx, Benjamin Schrauwen, David Verstraeten, Roel Baets, Peter Bienstman, and Jan Van Campenhout. 2008. Toward optical signal processing using photonic reservoir computing. Optics Express 16, 11182--11192.Google ScholarGoogle ScholarCross RefCross Ref
  65. David Verstraeten, Benjamin Schrauwen, Michiel d'Haene, and Dirk Stroobandt. 2007. An experimental unification of reservoir computing methods. Neural Netw. 20, 391--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. David Verstraeten, Benjamin Schrauwen, and Dirk Stroobandt. 2005. Reservoir computing with stochastic bitstream neurons. In Proceedings of the 16th Annual Prorisc Workshop. 454--459.Google ScholarGoogle Scholar
  67. Qian Wang, Youjie Li, and Peng Li. 2016. Liquid state machine based pattern recognition on FPGA with firing-activity dependent power gating and approximate computing. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’16). IEEE, 361--364.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Jianhong Wu. 1998. Symmetric functional differential equations and neural networks with memory. Trans. Amer. Math. Soc. 350, 4799--4838.Google ScholarGoogle ScholarCross RefCross Ref
  69. Daoyi Xu and Zhichun Yang. 2005. Impulsive delay differential inequality and stability of neural networks. J. Math. Anal. Appl. 305, 107--120.Google ScholarGoogle ScholarCross RefCross Ref
  70. Shimeng Yu, Yi Wu, Rakesh Jeyasingh, Duygu Kuzum, and H.-S. Philip Wong. 2011. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron. Dev. 58, 2729--2737.Google ScholarGoogle ScholarCross RefCross Ref
  71. Zhang Yong, Peng Li, Yingyezhe Jin, and Yoonsuck Choe. 2015. A digital liquid state machine with biologically inspired learning and its application to speech recognition. IEEE Trans. Netw. Learn. Syst. 26, 2635--2649.Google ScholarGoogle ScholarCross RefCross Ref
  72. Chenyuan Zhao, Jialing Li, Lingjia Liu, Lakshmi Sravanthi Koutha, Jian Liu, and Yang Yi. 2016. Novel spike based reservoir node design with high performance spike delay loop. In Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication. ACM, 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Chenyuan Zhao, Yang Yi, Jialing Li, Xin Fu, and Lingjia Liu. 2017. Interspike-interval-based analog spike-time-dependent encoder for neuromorphic processors. IEEE Trans. Very Large Scale Integr. Syst. 25, 2193--2205.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DFR: An Energy-efficient Analog Delay Feedback Reservoir Computing System for Brain-inspired Computing
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Journal on Emerging Technologies in Computing Systems
            ACM Journal on Emerging Technologies in Computing Systems  Volume 14, Issue 4
            Special Issue on Neuromorphic Computing
            October 2018
            164 pages
            ISSN:1550-4832
            EISSN:1550-4840
            DOI:10.1145/3294068
            • Editor:
            • Yuan Xie
            Issue’s Table of Contents

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 6 December 2018
            • Accepted: 1 August 2018
            • Revised: 1 June 2018
            • Received: 1 December 2017
            Published in jetc Volume 14, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader