skip to main content
research-article

Semi-Trained Memristive Crossbar Computing Engine with In Situ Learning Accelerator

Published:27 November 2018Publication History
Skip Abstract Section

Abstract

On-device intelligence is gaining significant attention recently as it offers local data processing and low power consumption. In this research, an on-device training circuitry for threshold-current memristors integrated in a crossbar structure is proposed. Furthermore, alternate approaches of mapping the synaptic weights into fully trained and semi-trained crossbars are investigated. In a semi-trained crossbar, a confined subset of memristors are tuned and the remaining subset of memristors are not programmed. This translates to optimal resource utilization and power consumption, compared to a fully programmed crossbar. The semi-trained crossbar architecture is applicable to a broad class of neural networks. System level verification is performed with an extreme learning machine for binomial and multinomial classification. The total power for a single 4 × 4 layer network, when implemented in IBM 65nm node, is estimated to be ≈42.16μW and the area is estimated to be 26.48μm × 22.35μm.

References

  1. Fabien Alibart, Elham Zamanidoost, and Dmitri B. Strukov. 2013. Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nature Commun. 4 (June 2013), 2072.Google ScholarGoogle Scholar
  2. Joshua E. Auerbach, Chrisantha Fernando, and Dario Floreano. 2014. Online extreme evolutionary learning machines. In Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems: Artificial Life 14. The MIT Press, 465--472.Google ScholarGoogle ScholarCross RefCross Ref
  3. Julien Borghetti, Gregory S. Snider, Philip J. Kuekes, J. Joshua Yang, Duncan R. Stewart, and R. Stanley Williams. 2010. Memristive switches enable stateful logic operations via material implication. Nature 464, 7290 (2010), 873--876.Google ScholarGoogle Scholar
  4. Gangotree Chakma, Md. Musabbir Adnan, Austin R. Wyer, Ryan Weiss, Catherine D. Schuman, and Garrett S. Rose. 2018. Memristive mixed-signal neuromorphic systems: Energy-efficient learning at the circuit-level. IEEE J. Emerg. Select. Topics Circ. Syst. 8, 1 (2018), 125--136.Google ScholarGoogle ScholarCross RefCross Ref
  5. Leon Chua. 1971. Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18, 5 (1971), 507--519.Google ScholarGoogle ScholarCross RefCross Ref
  6. Deliang Fan, Mrigank Sharad, and Kaushik Roy. 2014. Design and synthesis of ultralow energy spin-memristor threshold logic. IEEE Trans. Nanotechnol. 13, 3 (2014), 574--583. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Md Raqibul Hasan. 2016. Memristor Based Low Power High Throughput Circuits and Systems Design. Ph.D. Dissertation. University of Dayton.Google ScholarGoogle Scholar
  8. Raqibul Hasan, Tarek M. Taha, and Chris Yakopcic. 2017. On-chip training of memristor crossbar-based multi-layer neural networks. Microelectron. J. 66 (2017), 31--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Miao Hu, Hai Li, Yiran Chen, Qing Wu, Garrett S. Rose, and Richard W. Linderman. 2014. Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 25, 10 (2014), 1864--1878.Google ScholarGoogle ScholarCross RefCross Ref
  10. Guang-Bin Huang. 2014. An insight into extreme learning machines: Random neurons, random features and kernels. Cogn. Comput. 6, 3 (2014), 376--390.Google ScholarGoogle ScholarCross RefCross Ref
  11. Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. 2012. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst., Man, Cybernet., Part B (Cybernet.) 42, 2 (2012), 513--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. 2004. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, Vol. 2. IEEE, 985--990.Google ScholarGoogle Scholar
  13. Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. 2006. Extreme learning machine: Theory and applications. Neurocomputing 70, 1 (2006), 489--501.Google ScholarGoogle ScholarCross RefCross Ref
  14. Giacomo Indiveri and Shih-Chii Liu. 2015. Memory and information processing in neuromorphic systems. Proc. IEEE 103, 8 (2015), 1379--1397.Google ScholarGoogle ScholarCross RefCross Ref
  15. Robert A. Jacobs. 1988. Increased rates of convergence through learning rate adaptation. Neural Netw. 1, 4 (1988), 295--307.Google ScholarGoogle ScholarCross RefCross Ref
  16. Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki Mazumder, and Wei Lu. 2010. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 4 (2010), 1297--1301.Google ScholarGoogle ScholarCross RefCross Ref
  17. Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong. 2013. Representational learning with ELMs for big data. IEEE Intell. Syst. 28, 6 (2013), 31--34.Google ScholarGoogle Scholar
  18. Takayuki Kawahara, Riichiro Takemura, Katsuya Miura, Jun Hayakawa, Shoji Ikeda, Young Min Lee, Ryutaro Sasaki, Yasushi Goto, Kenchi Ito, Toshiyasu Meguro, et al. 2008. 2 Mb SPRAM (spin-transfer torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read. IEEE J. Solid-State Circ. 43, 1 (2008), 109--120.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hyongsuk Kim, Maheshwar Pd. Sah, Changju Yang, Tamás Roska, and Leon O. Chua. 2012. Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circ. Syst. I: Reg. Papers 59, 1 (2012), 148--158.Google ScholarGoogle ScholarCross RefCross Ref
  20. Shahar Kvatinsky, Eby G. Friedman, Avinoam Kolodny, and Uri C. Weiser. 2013. TEAM: Threshold adaptive memristor model. IEEE Trans. Circ. Syst. I: Reg. Papers 60, 1 (2013), 211--221.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yann LeCun. 1998. The MNIST database of handwritten digits. Retrieved from http://yann.lecun.com/exdb/mnist/.Google ScholarGoogle Scholar
  22. M. Lichman. 2013. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.Google ScholarGoogle Scholar
  23. Roberto Marani, Gennaro Gelao, and Anna Gina Perri. 2015. A review on memristor applications. arXiv Preprint arXiv:1506.06899 (2015).Google ScholarGoogle Scholar
  24. Cory Merkel. 2017. Current-mode memristor crossbars for neuromemristive systems. arXiv Preprint arXiv:1707.05316 (2017).Google ScholarGoogle Scholar
  25. Cory Merkel and Dhireesha Kudithipudi. 2014. Neuromemristive extreme learning machines for pattern classification. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’14). IEEE, 77--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yoh-Han Pao, Gwang-Hoon Park, and Dejan J. Sobajic. 1994. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6, 2 (1994), 163--180.Google ScholarGoogle ScholarCross RefCross Ref
  27. André Bannwart Perina, Paulo Matias, Eduardo Marques, Vanderlei Bonato, João Miguel Gago Pontes De Brito, et al. 2017. Exploiting kant and kimura matrix inversion algorithm on FPGA. In Proceedings of the Euromicro Conference on Digital System Design (DSD’17). IEEE, 516--519.Google ScholarGoogle Scholar
  28. Mirko Prezioso, Farnood Merrikh-Bayat, B. D. Hoskins, G. C. Adam, Konstantin K. Likharev, and Dmitri B. Strukov. 2015. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 7550 (2015), 61--64.Google ScholarGoogle Scholar
  29. Maheshwar Pd. Sah, Changju Yang, Hyongsuk Kim, and Leon O. Chua. 2012. Memristor circuit for artificial synaptic weighting of pulse inputs. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’12). IEEE, 1604--1607.Google ScholarGoogle Scholar
  30. Greg S. Snider. 2008. Spike-timing-dependent learning in memristive nanodevices. In Proceedings of the IEEE International Symposium on Nanoscale Architectures (NANOARCH’08). IEEE, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Daniel Soudry, Dotan Di Castro, Asaf Gal, Avinoam Kolodny, and Shahar Kvatinsky. 2015. Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neural Netw. Learn. Syst. 26, 10 (2015), 2408--2421.Google ScholarGoogle ScholarCross RefCross Ref
  32. Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley Williams. 2008. The missing memristor found. Nature 453, 7191 (2008), 80--83.Google ScholarGoogle Scholar
  33. Manan Suri, Vivek Parmar, Gilbert Sassine, and Fabien Alibart. 2015. OXRAM based ELM architecture for multi-class classification applications. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’15). IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  34. Tarek M. Taha, Raqibul Hasan, and Chris Yakopcic. 2014. Memristor crossbar-based multicore neuromorphic processors. In Proceedings of the 27th IEEE International System-on-Chip Conference (SOCC’14). IEEE, 383--389.Google ScholarGoogle ScholarCross RefCross Ref
  35. Enyi Yao and Arindam Basu. 2017. VLSI extreme learning machine: A design space exploration. IEEE Trans. Very Large Scale Integr. Syst. 25, 1 (2017), 60--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Abdullah M. Zyarah and Dhireesha Kudithipudi. 2017. Extreme learning machine as a generalizable classification engine. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’17). IEEE, 3371--3376.Google ScholarGoogle Scholar
  37. Abdullah M. Zyarah, Nicholas Soures, Lydia Hays, Robin B. Jacobs-Gedrim, Sapan Agarwal, Matthew Marinella, and Dhireesha Kudithipudi. 2017. Ziksa: On-chip learning accelerator with memristor crossbars for multilevel neural networks. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’17). IEEE, 1--4.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Semi-Trained Memristive Crossbar Computing Engine with In Situ Learning Accelerator

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 14, Issue 4
        Special Issue on Neuromorphic Computing
        October 2018
        164 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/3294068
        • Editor:
        • Yuan Xie
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 November 2018
        • Accepted: 1 June 2018
        • Revised: 1 May 2018
        • Received: 1 December 2017
        Published in jetc Volume 14, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format