skip to main content
research-article

Volume Path Guiding Based on Zero-Variance Random Walk Theory

Published:05 June 2019Publication History
Skip Abstract Section

Abstract

The efficiency of Monte Carlo methods, commonly used to render participating media, is directly linked to the manner in which random sampling decisions are made during path construction. Notably, path construction is influenced by scattering direction and distance sampling, Russian roulette, and splitting strategies. We present a consistent suite of volumetric path construction techniques where all these sampling decisions are guided by a cached estimate of the adjoint transport solution. The proposed strategy is based on the theory of zero-variance path sampling schemes, accounting for the spatial and directional variation in volumetric transport. Our key technical contribution, enabling the use of this approach in the context of volume light transport, is a novel guiding strategy for sampling the particle collision distance proportionally to the product of transmittance and the adjoint transport solution (e.g., in-scattered radiance). Furthermore, scattering directions are likewise sampled according to the product of the phase function and the incident radiance estimate. Combined with guided Russian roulette and splitting strategies tailored to volumes, we demonstrate about an order-of-magnitude error reduction compared to standard unidirectional methods. Consequently, our approach can render scenes otherwise intractable for such methods, while still retaining their simplicity (compared to, e.g., bidirectional methods).

Skip Supplemental Material Section

Supplemental Material

a25-herholz.mp4

mp4

294.5 MB

References

  1. John Amanatides and Andrew Woo. 1987. A fast voxel traversal algorithm for ray tracing. In Eurographics ’87. 3--10.Google ScholarGoogle Scholar
  2. Parthasarathy Bagchi and Irwin Guttman. 1988. Theoretical considerations of the multivariate von Mises-Fisher distribution. J. Appl. Stat. 15, 2 (Jan. 1988), 149--169.Google ScholarGoogle ScholarCross RefCross Ref
  3. Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and Suvrit Sra. 2005. Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6 (2005), 1345--1382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Mark Bangert, Philipp Hennig, and Uwe Oelfke. 2010. Using an infinite von Mises-Fisher mixture model to cluster treatment beam directions in external radiation therapy. In Conference on Machine Learning and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Thomas Bashford-Rogers, Kurt Debattista, and Alan Chalmers. 2012. A significance cache for accelerating global illumination. Comput. Graph. Forum 31, 6 (2012), 1837--1851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Laurent Belcour, Kavita Bala, and Cyril Soler. 2014. A local frequency analysis of light scattering and absorption. ACM Trans. Graph. 33 (2014), 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Benedikt Bitterli and Wojciech Jarosz. 2017. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Trans. Graph. 36, 4 (2017), 112:1--112:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Norbert Bus and Tamy Boubekeur. 2017. Double hierarchies for directional importance sampling in Monte Carlo rendering. J. Comput. Graphics Techn. 6, 3 (2017), 25--37.Google ScholarGoogle Scholar
  9. Florent Chatelain and Nicolas Le Bihan. 2013. Von Mises-Fisher approximation of multiple scattering process on the hypersphere. In International Conference on Acoustics, Speech, and Signal Processing.Google ScholarGoogle Scholar
  10. Per H. Christensen. 2003. Adjoints and importance in rendering: An overview. IEEE Trans. Visual. Comput. Graphics 9, 3 (2003), 329--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Per H. Christensen and Wojciech Jarosz. 2016. The path to path-traced movies. Found. Trends Comput. Graphics Vision 10, 2 (2016), 103--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ken Dahm and Alexander Keller. 2017. Learning light transport the reinforced way. In ACM SIGGRAPH 2017 Talks. 73:1--73:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Michael Donikian, Bruce Walter, Kavita Bala, Sebastian Fernandez, and Donald P. Greenberg. 2006. Accurate direct illumination using iterative adaptive sampling. IEEE Trans. Visual. Comput. Graphics 12, 3 (2006), 353--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Craig Donner and Henrik Wann Jensen. 2006. A spectral BSSRDF for shading human skin. In Proceedings of the 17th Eurographics Conference on Rendering Techniques. 409--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. R. Dwivedi. 1982. A new importance biasing scheme for deep-penetration Monte Carlo. Ann. Nucl. Energy 9, 7 (1982).Google ScholarGoogle Scholar
  16. Thomas Engelhardt and Carsten Dachsbacher. 2010. Epipolar sampling for shadows and crepuscular rays in participating media with single scattering. In Proc. I3D. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Thomas Engelhardt, Jan Novák, Thorsten-W. Schmidt, and Carsten Dachsbacher. 2012. Approximate bias compensation for rendering scenes with heterogeneous participating media. Comp. Graph. Forum 31 (2012), 2145--2154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, and Brian Green. 2017. Path tracing in production. In ACM SIGGRAPH 2017 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production volume rendering. In ACM SIGGRAPH 2017 Courses. 2:1--2:79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jeppe Revall Frisvad. 2011. Importance sampling the Rayleigh phase function. J. Opt. Soc. Am. A 28 (2011), 2436--2441.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Galtier, S. Blanco, C. Caliot, C. Coustet, J. Dauchet, M. El Hafi, V. Eymet, R. Fournier, J. Gautrais, A. Khuong, B. Piaud, and G. Terrée. 2013. Integral formulation of null-collision Monte Carlo algorithms. J. Quant. Spectrosc. Radiat. Transfer 125, C (2013), 57--68.Google ScholarGoogle Scholar
  22. Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint importance sampling of low-order volumetric scattering. ACM Trans. Graph. 32, 6 (2013), 164:1--164:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Peter Grassberger. 2002. Go with the winners: A general Monte Carlo strategy. Comput. Phys. Commun. 147, 1 (2002), 64--70.Google ScholarGoogle ScholarCross RefCross Ref
  24. Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary sample space path guiding. In Eurographics Symposium on Rendering—EI 8 I. 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016. Product importance sampling for light transport path guiding. Comput. Graphics Forum 35, 4 (2016), 67--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Heinrich Hey and Werner Purgathofer. 2002. Importance sampling with hemispherical particle footprints. In Proc. of SCCG. 107--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Eduard Hoogenboom. 2008. Zero-variance Monte Carlo schemes revisited. Nucl. Sci. Eng. 160, 1 (2008), 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  28. Wenzel Jakob. 2010. Mitsuba renderer. Retrieved from http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  29. Wenzel Jakob. 2012. Numerically Stable Sampling of the von Mises-Fisher Distribution on (and Other Tricks). Technical Report. Cornell University.Google ScholarGoogle Scholar
  30. Wojciech Jarosz. 2013. The perils of evolutionary rendering research: Beyond the point sample. (2013). Eurographics Symposium on Rendering, Invited Talk.Google ScholarGoogle Scholar
  31. Wojciech Jarosz, Craig Donner, Matthias Zwicker, and Henrik Wann Jensen. 2008. Radiance caching for participating media. ACM Trans. Graph. 27, 1 (2008), 7:1--7:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Trans. Graphics 30, 1 (2011), 5:1--5:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Rendering Techniques (Proc. of EGWR).Google ScholarGoogle Scholar
  34. Henrik Wann Jensen and Per H. Christensen. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Proc. of SIGGRAPH. 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A practical model for subsurface light transport. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. James T. Kajiya. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20 (1986). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Malvin H. Kalos and Paula A. Whitlock. 2008. Monte Carlo Methods. Wiley-VCH.Google ScholarGoogle Scholar
  38. David Koerner, Jan Novák, Peter Kutz, Ralf Habel, and Wojciech Jarosz. 2016. Subdivision next-event estimation for path-traced subsurface scattering. In Eurographics Symposium on Rendering—Experimental Ideas 8 Implementations. 91--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Christopher Kulla and Marcos Fajardo. 2012. Importance sampling techniques for path tracing in participating media. Comput. Graphics Forum 31, 4 (2012), 1519--1528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Trans. Graphics (Proceedings of SIGGRAPH) 36, 4 (2017), 111:1--111:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Jaroslav Křivánek and Eugene d’Eon. 2014. A zero-variance-based sampling scheme for Monte Carlo subsurface scattering. In ACM SIGGRAPH 2014 Talks. 66:1--66:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graphics (Proceedings of SIGGRAPH) 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Eric P. Lafortune and Yves D. Willems. 1995. A 5D tree to reduce the variance of Monte Carlo ray tracing. In Rendering Techniques. 11--20.Google ScholarGoogle Scholar
  44. NJ McCormick and I. Kuscer. 1973. Singular eigenfunction expansions in neutron transport theory. Advan. Nucl. Sci. Technol. 7 (1973), 181--282.Google ScholarGoogle ScholarCross RefCross Ref
  45. Johannes Meng, Johannes Hanika, and Carsten Dachsbacher. 2016. Improving the Dwivedi sampling scheme. Comput. Graphics Forum 35, 4 (2016), 037--044. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. L.W.G. Morgan and D. Kotlyar. 2015. Weighted-delta-tracking for Monte Carlo particle transport. Ann. Nucl. Energy 85, C (2015), 1184--1188.Google ScholarGoogle Scholar
  47. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for efficient light-transport simulation. Computer Graphics Forum 36, 4 (2017), 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2018. Neural importance sampling. CoRR abs/1808.03856 (2018). arxiv:1808.03856 http://arxiv.org/abs/1808.03856.Google ScholarGoogle Scholar
  49. R. F. Murray and Y. Morgenstern. 2010. Cue combination on the circle and the sphere. J. Vision 10, 11 (2010), 15--15.Google ScholarGoogle ScholarCross RefCross Ref
  50. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo methods for volumetric light transport simulation. Comput. Graphics Forum (Proceedings of Eurographics - State of the Art Reports) 37, 2 (2018).Google ScholarGoogle Scholar
  51. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012b. Progressive virtual beam lights. Comput. Graphics Forum (Proceedings of EGSR) 31, 4 (2012), 1407--1413. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012a. Virtual ray lights for rendering scenes with participating media. ACM Trans. Graphics (Proceedings of SIGGRAPH) 31, 4 (2012), 60:1--60:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for estimating attenuation in participating media. ACM Trans. Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (2014), 179:1--179:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Vincent Pegoraro, Ingo Wald, and Steven G. Parker. 2008. Sequential Monte Carlo integration in low-anisotropy participating media. In Proceedings of the Eurographics Conference on Rendering. 1097--1104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Mathias Raab, Daniel Seibert, and Alexander Keller. 2006. Unbiased global illumination with participating media. In Proc. Monte Carlo and Quasi-Monte Carlo Methods. 591--606.Google ScholarGoogle Scholar
  57. Zhong Ren, Kun Zhou, Stephen Lin, and Baining Guo. 2008. Gradient-based Interpolation and Sampling for Real-time Rendering of Inhomogeneous, Single-scattering Media. Technical Report MSR-TR-2008-51. Microsoft Research.Google ScholarGoogle Scholar
  58. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive sampling and reconstruction using greedy error minimization. In Proceedings of the 2011 SIGGRAPH Asia Conference. 159:1--159:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. M. Šik and J. Jaroslav Křivánek. 2018. Survey of Markov chain Monte Carlo methods in light transport simulation. IEEE Trans. Visual. Comput. Graphics 1--1.Google ScholarGoogle ScholarCross RefCross Ref
  60. Florian Simon, Johannes Hanika, Tobias Zirr, and Carsten Dachsbacher. 2017. Line integration for rendering heterogeneous emissive volumes. Comput. Graphics Forum (Proc. of EGSR) 36, 4 (2017), 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Florian Simon, Alisa Jung, Johannes Hanika, and Carsten Dachsbacher. 2018. Selective guided sampling with complete light transport paths. ACM Trans. Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (2018), 223:1--223:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Jerome Spanier and Ely Meyer Gelbard. 1969. Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley.Google ScholarGoogle Scholar
  63. László Szirmay-Kalos. 2005. Go with the winners strategy in path tracing. J. WSCG 13, 1–3 (2005), 49--56.Google ScholarGoogle Scholar
  64. László Szirmay-Kalos, Iliyan Georgiev, Milán Magdics, Balázs Molnár, and Dávid Légrády. 2017. Unbiased light transport estimators for inhomogeneous participating media. Comput. Graphics Forum 36, 2 (2017), 9--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. László Szirmay-Kalos, Balázs Tóth, and Milan Magdics. 2011. Free path sampling in high resolution inhomogeneous participating media. Comput. Graphics Forum 30 (2011), 85--97.Google ScholarGoogle ScholarCross RefCross Ref
  66. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression for adaptive direct illumination sampling. ACM Trans. Graphics (Proc. of SIGGRAPH 2018) 37, 4 (2018), 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. P. von Radziewsky, T. Kroes, M. Eisemann, and E. Eisemann. 2017. Efficient stochastic rendering of static and animated volumes using visibility sweeps. IEEE Trans. Visual. Comput. Graphics 23, 9 (2017), 2069--2081.Google ScholarGoogle ScholarCross RefCross Ref
  69. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graphics 33, 4 (2014), 101:1--101:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-driven Russian roulette and splitting in light transport simulation. ACM Trans. Graphics 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Adolf N. Witt. 1977. Multiple scattering in reflection nebulae. Astrophys. J. Suppl. Ser. 35 (1977).Google ScholarGoogle Scholar
  72. E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Proc. Conf. Applications of Computing Methods to Reactor Problems, Vol. 557.Google ScholarGoogle Scholar
  73. Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita. 2010. Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media. ACM Trans. Graphics (Proc. SIGGRAPH) 29 (2010), 177:1--177:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Quan Zheng and Matthias Zwicker. 2018. Learning to importance sample in primary sample space. CoRR abs/1808.07840 (2018). arxiv:1808.07840 http://arxiv.org/abs/1808.07840.Google ScholarGoogle Scholar

Index Terms

  1. Volume Path Guiding Based on Zero-Variance Random Walk Theory

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 3
      June 2019
      125 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3322934
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 June 2019
      • Revised: 1 March 2019
      • Accepted: 1 March 2019
      • Received: 1 February 2018
      Published in tog Volume 38, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format