skip to main content
research-article
Public Access

Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension

Published:23 May 2018Publication History
Skip Abstract Section

Abstract

We formulate the conditional Kolmogorov complexity of x given y at precision r, where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways;

(1) We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E. We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2.

(2)We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim(x|y) and Dim(x|y) of x given y, where x and y are points in Euclidean spaces. Intuitively, these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y. We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well-studied dimensions dim(x) and Dim(x) and the mutual dimensions mdim(x : y) and Mdim(x : y).

References

  1. K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. 2007. Effective strong dimension in algorithmic information and computational complexity. SIAM J. Comput. 37, 3, 671--705. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. S. Besicovitch. 1919. Sur deux questions d’intégrabilité des fonctions. J. Soc. Phys. Math. l’Univ. Perm 2, 105--123.Google ScholarGoogle Scholar
  3. A. S. Besicovitch. 1928. On Kakeya’s problem and a similar one. Math. Zeitschr. 27, 312--320.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Case and J. H. Lutz. 2015a. Mutual dimension. ACM Trans. Comput. Theory 7, 3, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Case and J. H. Lutz. 2015b. Mutual dimension and random sequences. In Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 9235. Springer, 199--210.Google ScholarGoogle Scholar
  6. G. J. Chaitin. 1966. On the length of programs for computing finite binary sequences. J. ACM 13, 4, 547--569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. J. Chaitin. 1969. On the length of programs for computing finite binary sequences: statistical considerations. J. ACM 16, 1, 145--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. R. Cover and J. A. Thomas. 2006. Elements of Information Theory (2nd ed.). Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. O. Davies. 1971. Some remarks on the Kakeya problem. Proc. Cambr. Phil. Soc. 69, 417--421.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. Dougherty, J. H. Lutz, R. D. Mauldin, and J. Teutsch. 2014. Translating the Cantor set by a random real. Trans. Am. Math. Soc. 366, 3027--3041.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. Downey and D. Hirschfeldt. 2010. Algorithmic Randomness and Complexity. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. Dvir. 2009. On the size of Kakeya sets in finite fields. J. Am. Math. Soc. 22, 1093--1097.Google ScholarGoogle ScholarCross RefCross Ref
  13. K. Falconer. 2014. Fractal Geometry: Mathematical Foundations and Applications (3rd ed.). Wiley.Google ScholarGoogle Scholar
  14. X. Gu, J. H. Lutz, and E. Mayordomo. 2006. Points on computable curves. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’06). IEEE, Los Alamitos, CA, 469--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. X. Gu, J. H. Lutz, E. Mayordomo, and P. Moser. 2014. Dimension spectra of random subfractals of self-similar fractals. Ann. Pure Appl. Logic 165, 11, 1707--1726.Google ScholarGoogle ScholarCross RefCross Ref
  16. F. Hausdorff. 1919. Dimension und äusseres Mass. Math. Ann. 79, 157--179.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. N. Kolmogorov. 1965. Three approaches to the quantitative definition of information. Probl. Inf. Transmiss. 1, 1, 1--7.Google ScholarGoogle Scholar
  18. L. A. Levin. 1973. On the notion of a random sequence. Sov. Math Dokl. 14, 5, 1413--1416.Google ScholarGoogle Scholar
  19. L. A. Levin. 1974. Laws of information conservation (nongrowth) and aspects of the foundation of probability theory. Probl. Pered. Inf. 10, 3, 30--35.Google ScholarGoogle Scholar
  20. M. Li and P. M. Vitányi. 2008. An Introduction to Kolmogorov Complexity and Its Applications (3rd ed.). Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. H. Lutz. 2003a. Dimension in complexity classes. SIAM J. Comput. 32, 5, 1236--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. H. Lutz. 2003b. The dimensions of individual strings and sequences. Inf. Comput. 187, 1, 49--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. H. Lutz and N. Lutz. 2015. Lines missing every random point. Computability 4, 2, 85--102.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. H. Lutz and E. Mayordomo. 2008. Dimensions of points in self-similar fractals. SIAM J. Comput. 38, 3, 1080--1112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. H. Lutz and K. Weihrauch. 2008. Connectivity properties of dimension level sets. Math. Logic Quart. 54, 483--491.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. M. Marstrand. 1954. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. 4, 3, 257--302.Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Martin-Löf. 1966. The definition of random sequences. Inf. Contr. 9, 6, 602--619.Google ScholarGoogle ScholarCross RefCross Ref
  28. E. Mayordomo. 2002. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84, 1, 1--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Nies. 2009. Computability and Randomness. Oxford University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. E. Shannon. 1948. A mathematical theory of communication. Bell Syst. Techn. J. 27, 3--4, 379--423, 623--656.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. J. Solomonoff. 1964. A formal theory of inductive inference. Inf. Contr. 7, 1--2, 1--22, 224--254.Google ScholarGoogle ScholarCross RefCross Ref
  32. E. M. Stein and R. Shakarchi. 2005. Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ.Google ScholarGoogle ScholarCross RefCross Ref
  33. T. Tao. 2000. From rotating needles to stability of waves: emerging connections between combinatorics, analysis, and PDE. Not. Am. Math. Soc. 48, 294--303.Google ScholarGoogle Scholar
  34. A. M. Turing. 1937. On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc. Lond. Math. Soc. 43, 2, 544--546.Google ScholarGoogle Scholar
  35. K. Weihrauch. 2000. Computable Analysis: An Introduction. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  36. T. Wolff. 1996. Recent work connected with the Kakeya problem. In Prospects in Mathematics. American Mathematical Society, Princeton, NJ, 129--162.Google ScholarGoogle Scholar

Index Terms

  1. Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computation Theory
        ACM Transactions on Computation Theory  Volume 10, Issue 2
        June 2018
        122 pages
        ISSN:1942-3454
        EISSN:1942-3462
        DOI:10.1145/3208321
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 May 2018
        • Accepted: 1 January 2018
        • Revised: 1 December 2017
        • Received: 1 February 2017
        Published in toct Volume 10, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader