skip to main content
research-article
Open Access

The Church-Turing thesis: logical limit or breachable barrier?

Authors Info & Claims
Published:19 December 2018Publication History
Skip Abstract Section

Abstract

In its original form, the Church-Turing thesis concerned computation as Alan Turing and Alonzo Church used the term in 1936---human computation.

References

  1. Aharonov, D. and Vazirani, U.V. Is quantum mechanics falsifiable? A computational perspective on the foundations of quantum mechanics. Chapter in Computability: Gödel, Turing, Church and Beyond, B.J. Copeland, C.J. Posy, and O. Shagrir, Eds. MIT Press, Cambridge, MA, 2013.Google ScholarGoogle Scholar
  2. Andréka, H., Németi, I., and Németi, P. General relativistic hypercomputing and foundation of mathematics. Natural Computing 8, 3 (Sept. 2009), 499--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bernstein, E. and Vazirani, U. Quantum complexity theory. SIAM Journal on Computing 26, 5 (Oct. 1997), 1411--1473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Castelvecchi, D. Paradox at the heart of mathematics makes physics problem unanswerable. Nature 528 (Dec. 9, 2015), 207.Google ScholarGoogle ScholarCross RefCross Ref
  5. Church, A. An unsolvable problem of elementary number theory. American Journal of Mathematics 58, 2 (Apr. 1936), 345--363.Google ScholarGoogle ScholarCross RefCross Ref
  6. Copeland, B.J. The broad conception of computation. American Behavioral Scientist 40, 6 (May 1997), 690--716.Google ScholarGoogle ScholarCross RefCross Ref
  7. Copeland, B.J. Even Turing machines can compute uncomputable functions. Chapter in Unconventional Models of Computation, C. Calude, J. Casti, and M. Dinneen, Eds. Springer, Singapore, 1998.Google ScholarGoogle Scholar
  8. Copeland, B.J. Narrow versus wide mechanism: Including a re-examination of Turing's views on the mind-machine issue. The Journal of Philosophy 97, 1 (Jan. 2000), 5--32.Google ScholarGoogle Scholar
  9. Copeland, B.J. Hypercomputation. Minds and Machines 12, 4 (Nov. 2002), 461--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Copeland, B.J. The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life, Plus the Secrets of Enigma. Oxford University Press, Oxford, U.K., 2004.Google ScholarGoogle Scholar
  11. Copeland, B.J. and Proudfoot, D. Alan Turing's forgotten ideas in computer science. Scientific American 280, 4 (Apr. 1999), 98--103.Google ScholarGoogle ScholarCross RefCross Ref
  12. Copeland, B.J. and Shagrir, O. Do accelerating Turing machines compute the uncomputable? Minds and Machines 21, 2 (May 2011), 221--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Copeland, B.J. and Shagrir, 0. Turing versus Gödel on computability and the mind. Chapter in Computability: Gödel, Turing, Church, and Beyond, B.J. Copeland, C.J. Posy, and O. Shagrir, Eds. MIT Press, Cambridge, MA, 2013.Google ScholarGoogle Scholar
  14. Cubitt, T.S., Perez-Garcia, D., and Wolf, M.M. Undecidability of the spectral gap. Nature 528, 7581 (Dec. 2015), 207--211.Google ScholarGoogle ScholarCross RefCross Ref
  15. Davis, M. Why Gödel didn't have Church's thesis. Information and Control 54, 1--2 (July 1982), 3--24.Google ScholarGoogle ScholarCross RefCross Ref
  16. Dershowitz, N. and Gurevich, Y. A natural axiomatization of computability and proof of Church's thesis. Bulletin of Symbolic Logic 14, 3 (Sept. 2008), 299--350.Google ScholarGoogle ScholarCross RefCross Ref
  17. Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 400, 1818 (July 1985), 97--117.Google ScholarGoogle Scholar
  18. Doyle, J. What is Church's thesis? An outline. Minds and Machines 12, 4 (Nov. 2002), 519--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Eisert, J., Müller, M.P., and Gogolin, C. Quantum measurement occurrence is undecidable. Physical Review Letters 108, 26 (June 2012), 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  20. Gandy, R.O. Church's thesis and principles for mechanisms. In Proceedings of the Kleene Symposium, J. Barwise, H.J. Keisler, and K. Kunen, Eds. (Madison, WI, June 1978). North-Holland, Amsterdam, Netherlands, 1980.Google ScholarGoogle Scholar
  21. Goldreich, O. Computational Complexity: A Conceptual Perspective. Cambridge University Press, New York, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gurevich, Y. What is an algorithm? In Proceedings of the 38<sup>th</sup> Conference on Current Trends in the Theory and Practice of Computer Science (Špindleůrv Mlýn, Czech Republic, Jan. 21--27), M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, and G. Turán, Eds. Springer, Berlin, Heidelberg, Germany, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Harel, D. Algorithmics: The Spirit of Computing, Second Edition. Addison-Wesley, Reading, MA, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hopcroft, J.E. and Ullman, J.D. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kleene, S.C. Introduction to Metamathematics. Van Nostrand, New York, 1952.Google ScholarGoogle Scholar
  26. Komar, A. Undecidability of macroscopically distinguishable states in quantum field theory. Physical Review 133, 2B (Jan. 1964), 542--544.Google ScholarGoogle ScholarCross RefCross Ref
  27. Kreisel, G. Mathematical logic: What has it done for the philosophy of mathematics? Chapter in Bertrand Russell: Philosopher of the Century, R. Schoenman, Ed. Allen and Unwin, London, U.K., 1967.Google ScholarGoogle Scholar
  28. Kripke, S.A. Another approach: The Church-Turing 'thesis' as a special corollary of Gödel's completeness theorem. Chapter in Computability: Gödel, Turing, Church, and Beyond, B.J. Copeland, C.J. Posy, and O. Shagrir, Eds. MIT Press, Cambridge, MA, 2013.Google ScholarGoogle Scholar
  29. Lewis, H.R. and Papadimitriou, C.H. Elements of the Theory of Computation. Prentice Hall, Upper Saddle River, NJ, 1981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Moschovakis, Y.N. and Paschalis, V. Elementary algorithms and their implementations. Chapter in New Computational Paradigms: Changing Conceptions of What Is Computable, S.B. Cooper, B. Lowe, and A. Sorbi, Eds. Springer, New York, 2008.Google ScholarGoogle Scholar
  31. Piccinini, G. The physical Church-Turing thesis: Modest or bold? The British Journal for the Philosophy of Science 62, 4 (Aug. 2011), 733--769.Google ScholarGoogle ScholarCross RefCross Ref
  32. Pitowsky, I. The physical Church thesis and physical computational complexity. Iyyun 39, 1 (Jan. 1990), 81--99.Google ScholarGoogle Scholar
  33. Post, E.L. Finite combinatory processes: Formulation I. The Journal of Symbolic Logic 1, 3 (Sept. 1936), 103--105.Google ScholarGoogle Scholar
  34. Pour-El, M.B. and Richards, I.J. The wave equation with computable initial data such that its unique solution is not computable. Advances in Mathematics 39, 3 (Mar. 1981), 215--239.Google ScholarGoogle ScholarCross RefCross Ref
  35. Sieg, W. Mechanical procedures and mathematical experience. Chapter in Mathematics and Mind, A. George, Ed. Oxford University Press, New York, 1994.Google ScholarGoogle Scholar
  36. Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem (1936); in Copeland.<sup>&lt;zref=R10&gt;10&lt;zrefx&gt;</sup>Google ScholarGoogle Scholar
  37. Turing, A.M. Lecture on the Automatic Computing Engine (1947); in Copeland.<sup>&lt;zref=R10&gt;10&lt;zrefx&gt;</sup>Google ScholarGoogle Scholar
  38. Turing, A.M. Intelligent Machinery (1948); in Copeland.<sup>&lt;zref=R10&gt;10&lt;zrefx&gt;</sup>Google ScholarGoogle Scholar
  39. Wolfram, S. Undecidability and intractability in theoretical physics. Physical Review Letters 54, 8 (Feb. 1985), 735--738.Google ScholarGoogle ScholarCross RefCross Ref
  40. Yao, A.C.C. Classical physics and the Church-Turing thesis. Journal of the ACM 50, 1 (Jan. 2003), 100--105. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The Church-Turing thesis: logical limit or breachable barrier?

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Communications of the ACM
            Communications of the ACM  Volume 62, Issue 1
            January 2019
            109 pages
            ISSN:0001-0782
            EISSN:1557-7317
            DOI:10.1145/3301004
            Issue’s Table of Contents

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 19 December 2018

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Popular
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format