skip to main content
research-article

Updating Dynamic Random Hyperbolic Graphs in Sublinear Time

Published:15 November 2018Publication History
Skip Abstract Section

Abstract

Generative network models play an important role in algorithm development, scaling studies, network analysis, and realistic system benchmarks for graph data sets. A complex network model gaining considerable popularity builds random hyperbolic graphs, generated by distributing points within a disk in the hyperbolic plane and then adding edges between points with a probability depending on their hyperbolic distance.

We present a dynamic extension to model gradual network change, while preserving at each step the point position probabilities. To process the dynamic changes efficiently, we formalize the concept of a probabilistic neighborhood: Let P be a set of n points in Euclidean or hyperbolic space, q a query point, dist a distance metric, and f : R+ → [0, 1] a monotonically decreasing function. Then, the probabilistic neighborhood N(q, f) of q with respect to f is a random subset of P and each point pP belongs to N(q, f) with probability f(dist(p, q)). We present a fast, sublinear-time query algorithm to sample probabilistic neighborhoods from planar point sets. For certain distributions of planar P, we prove that our algorithm answers a query in O((|N(q, f)| + √n) log n) time with high probability. This enables us to process a node movement in random hyperbolic graphs in sublinear time, resulting in a speedup of about one order of magnitude in practice compared to the fastest previous approach. Apart from that, our query algorithm is also applicable to Euclidean geometry, making it of independent interest for other sampling or probabilistic spreading scenarios.

References

  1. Pankaj K. Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M. Phillips, Ke Yi, and Wuzhou Zhang. 2013. Nearest neighbor searching under uncertainty II. In Proceedings of the 32nd Symposium on Principles of Database Systems (PODS’13). ACM, 115--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Lars Arge and Kasper Green Larsen. 2012. I/O-efficient spatial data structures for range queries. In SIGSPATIAL Special. Vol. 4. ACM, New York, NY, 2--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Arratia and L. Gordon. 1989. Tutorial on large deviations for the binomial distribution. Bull. Math. Biol. 51, 1 (1989), 125--131.Google ScholarGoogle ScholarCross RefCross Ref
  4. Vladimir Batagelj and Ulrik Brandes. 2005. Efficient generation of large random networks. Phys. Rev. E 71, 3 (2005), 036113.Google ScholarGoogle ScholarCross RefCross Ref
  5. Elisabetta Bergamini and Henning Meyerhenke. 2016. Approximating betweenness centrality in fully dynamic networks. Internet Math. 12, 5 (2016), 281--314.Google ScholarGoogle ScholarCross RefCross Ref
  6. Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. 2016. Efficient embedding of scale-free graphs in the hyperbolic plane. In Proceedings of the 24th Annual European Symposium on Algorithms (ESA’16) (Leibniz International Proceedings in Informatics (LIPIcs’16)), Piotr Sankowski and Christos Zaroliagis (Eds.), Vol. 57. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 16:1--16:18.Google ScholarGoogle Scholar
  7. Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. 2016. The probability of connectivity in a hyperbolic model of complex networks. Random Struct. Algor. 49, 1 (2016), 65--94.Google ScholarGoogle ScholarCross RefCross Ref
  8. Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. 2013. On the giant component of random hyperbolic graphs. In Proceedings of the 7th European Conference on Combinatorics, Graph Theory and Applications. CRM Series, Vol. 16. Scuola Normale Superiore, 425--429.Google ScholarGoogle ScholarCross RefCross Ref
  9. Karl Bringmann, Ralph Keusch, and Johannes Lengler. 2017. Sampling geometric inhomogeneous random graphs in linear time. In Leibniz International Proceedings in Informatics (LIPIcs’17), Vol. 87. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.Google ScholarGoogle Scholar
  10. Deepayan Chakrabarti and Christos Faloutsos. 2006. Graph mining: Laws, generators, and algorithms. ACM Comput. Surveys 38, 1 (2006), 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Tobias Friedrich and Anton Krohmer. 2015. On the diameter of hyperbolic random graphs. Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP’15). Springer, Berlin, 614--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. 2012. Random hyperbolic graphs: Degree sequence and clustering. In Proceedings of the 39th International Colloquium on Automata, Languages, and Programming (ICALP’12). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. W. Hoeffding. 1963. Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc. 58, 301 (1963), 13--30.Google ScholarGoogle ScholarCross RefCross Ref
  14. Xiaocheng Hu, Miao Qiao, and Yufei Tao. 2014. Independent range sampling. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’14). ACM, 246--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An improved R-tree using fractals. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94). Morgan Kaufmann Publishers Inc., San Francisco, CA, 500--509. Retrieved from http://dl.acm.org/citation.cfm?id=645920.673001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Marcos Kiwi and Dieter Mitsche. 2015. A bound for the diameter of random hyperbolic graphs. In Proceedings of the 12th Workshop on Analytic Algorithmics and Combinatorics (ANALCO’15). SIAM, 26--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Robert Kleinberg. 2007. Geographic routing using hyperbolic space. In Proceedings of the Annual IEEE International Conference on Computer Communications (INFOCOM’07). 1902--1909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. 2014. A scalable generative graph model with community structure. SIAM J. Sci. Comput. 36, 5 (Sep. 2014), C424--C452.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. 2007. Probabilistic nearest-neighbor query on uncertain objects. In Advances in Databases: Concepts, Systems and Applications. Springer, 337--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá. 2010. Hyperbolic geometry of complex networks. Phys. Rev. E 82, 3 (Sep 2010), 036106. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  21. Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mark Newman. 2010. Networks: An Introduction. Oxford University Press. Retrieved from http://books.google.de/books/about/Networks.html?id=q7HVtpYVfC0C&pgis=1. Google ScholarGoogle ScholarCross RefCross Ref
  23. Fragkiskos Papadopoulos, Maksim Kitsak, M. Ángeles Serrano, Marián Boguná, and Dmitri Krioukov. 2012. Popularity versus similarity in growing networks. Nature 489, 7417 (2012), 537--540.Google ScholarGoogle Scholar
  24. Fragkiskos Papadopoulos, Dmitri Krioukov, Marián Boguñá, and Amin Vahdat. 2010. Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In Proceedings of the Annual IEEE International Conference on Computer Communications (INFOCOM’10). IEEE, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jian Pei, Ming Hua, Yufei Tao, and Xuemin Lin. 2008. Query answering techniques on uncertain and probabilistic data: Tutorial summary. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 1357--1364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hanan Samet. 2005. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers Inc., San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Christian L. Staudt, Michael Hamann, Ilya Safro, Alexander Gutfraind, and Henning Meyerhenke. 2017. Generating Scaled Replicas of Real-World Complex Networks. Springer International Publishing, Cham, 17--28.Google ScholarGoogle Scholar
  28. Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. NetworKit: A tool suite for large-scale complex network analysis. Netw. Sci. 4 (2016), 508–530.Google ScholarGoogle ScholarCross RefCross Ref
  29. Moritz von Looz and Henning Meyerhenke. 2016. Querying Probabilistic Neighborhoods in Spatial Data Sets Efficiently. Springer International Publishing, Cham, 449--460.Google ScholarGoogle Scholar
  30. Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. 2015. Generating random hyperbolic graphs in subquadratic time. ArXiv Preprint arXiv:1501.03545 (Sept. 2015).Google ScholarGoogle Scholar
  31. Moritz von Looz, Mustafa Safa Özdayi, Sören Laue, and Henning Meyerhenke. 2016. Generating massive complex networks with hyperbolic geometry faster in practice. In Proceedings of the IEEE High Performance Extreme Computing Conference (HPEC’16). IEEE, 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  32. Moritz von Looz, Roman Prutkin, and Henning Meyerhenke. 2015. Generating random hyperbolic graphs in subquadratic time. In Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC’15) (Lecture Notes in Computer Science), Khaled Elbassioni and Kazuhisa Makino (Eds.), Vol. 9472. Springer, Berlin, 467--478.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Updating Dynamic Random Hyperbolic Graphs in Sublinear Time

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Journal of Experimental Algorithmics
            ACM Journal of Experimental Algorithmics  Volume 23, Issue
            Special Issue ALENEX 2017
            2018
            368 pages
            ISSN:1084-6654
            EISSN:1084-6654
            DOI:10.1145/3178547
            Issue’s Table of Contents

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 15 November 2018
            • Accepted: 1 March 2018
            • Revised: 1 November 2017
            • Received: 1 April 2016
            Published in jea Volume 23, Issue

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader