skip to main content
research-article

Visual Exploration of Air Quality Data with a Time-correlation-partitioning Tree Based on Information Theory

Authors Info & Claims
Published:11 February 2019Publication History
Skip Abstract Section

Abstract

<?tight?>Discovering the correlations among variables of air quality data is challenging, because the correlation time series are long-lasting, multi-faceted, and information-sparse. In this article, we propose a novel visual representation, called Time-correlation-partitioning (TCP) tree, that compactly characterizes correlations of multiple air quality variables and their evolutions. A TCP tree is generated by partitioning the information-theoretic correlation time series into pieces with respect to the variable hierarchy and temporal variations, and reorganizing these pieces into a hierarchically nested structure. The visual exploration of a TCP tree provides a sparse data traversal of the correlation variations and a situation-aware analysis of correlations among variables. This can help meteorologists understand the correlations among air quality variables better. We demonstrate the efficiency of our approach in a real-world air quality investigation scenario.

References

  1. COLORBREWER 2.0. Retrieved from http://colorbrewer2.org/#type&equals;sequential&scheme&equals;&equals;&equals;Reds&n&equals;&equals;&equals;3.Google ScholarGoogle Scholar
  2. Ayan Biswas, Soumya Dutta, Han-Wei Shen, and Jonathan Woodring. 2013. An information-aware framework for exploring multivariate data sets. Trans. Visual. Comput. Graph. 19, 12 (2013), 2683--2692. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anna Lisa Bondi and Antonella Plaia. 2005. Weather variables and air pollution via hierarchical linear models. Stat. Environ. (2005), 237--240.Google ScholarGoogle Scholar
  4. U. D. Bordoloi and Han Wei Shen. 2005. View selection for volume rendering. In IEEE Visualization. 62.Google ScholarGoogle Scholar
  5. Stefan Bruckner and Torsten Möller. 2010. Isosurface similarity maps. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 773--782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Min Chen, Miquel Feixas, Ivan Viola, Anton Bardera, Han-Wei Shen, and Mateu Sbert. 2016. Information Theory Tools for Visualization. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Min Chen and Amos Golan. 2016. What may visualization processes optimize? Trans. Visual. Comput. Graph. 22, 12 (2016), 2619--2632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Min Chen and Heike Jaenicke. 2010. An information-theoretic framework for visualization. Trans. Visual. Comput. Graph. 16, 6 (2010), 1206--1215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Thomas M. Cover and Joy A. Thomas. 2012. Elements of Information Theory. John Wiley 8 Sons.Google ScholarGoogle Scholar
  10. Tuan Nhon Dang, Anushka Anand, and Leland Wilkinson. 2013. Timeseer: Scagnostics for high-dimensional time series. Trans. Visual. Comput. Graph. 19, 3 (2013), 470--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Demuzere, R. M. Trigo, Vila Guerau De Arellano, and N. P. M. Van Lipzig. 2009. The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmos. Chem. Phys. 9, 2009 (2009), 2695--2714.Google ScholarGoogle ScholarCross RefCross Ref
  12. Miquel Feixas, Esteve Del Acebo, Philippe Bekaert, and Mateu Sbert. 1999. An information theory framework for the analysis of scene complexity. In Computer Graphics Forum, Vol. 18. Wiley Online Library, 95--106.Google ScholarGoogle Scholar
  13. Yi Gu and Chaoli Wang. 2011. Transgraph: Hierarchical exploration of transition relationships in time-varying volumetric data. Trans. Visual. Comput. Graph. 17, 12 (2011), 2015--2024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Steffen Hadlak, Heidrun Schumann, Clemens H. Cap, and Till Wollenberg. 2013. Supporting the visual analysis of dynamic networks by clustering associated temporal attributes. IEEE Trans. Visual. Comput. Graph. 19, 12 (2013), 2267--2276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Martin Haidacher, Stefan Bruckner, Armin Kanitsar, and M. Eduard Gröller. 2008. Information-based transfer functions for multimodal visualization. In Proceedings of the 1st Eurographics conference on Visual Computing for Biomedicine. Eurographics Association, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Susan Havre, Beth Hetzler, and Lucy Nowell. 2000. ThemeRiver: Visualizing theme changes over time. In Proceedings of the IEEE Symposium on Information Visualization. 115--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. K. Ito, G. D. Thurston, A. Nadas, and M. Lippmann. 2001. Monitor-to-monitor temporal correlation of air pollution and weather variables in the North-Central U.S. J. Exposure Anal. Environ. Epidemiol. 11, 1 (2001), 21--32.Google ScholarGoogle ScholarCross RefCross Ref
  18. Guangfeng Ji and Han-Wei Shen. 2006. Dynamic view selection for time-varying volumes. Trans. Visual. Comput. Graph. 12, 5 (2006), 1109--1116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Teng-Yok Lee and Han-Wei Shen. 2009. Visualization and exploration of temporal trend relationships in multivariate time-varying data. Trans. Visual. Comput. Graph. 15, 6 (2009), 1359--1366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Philip Levis, Nelson Lee, Matt Welsh, and David Culler. 2003. TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey P. Lankford, and Daonna M. Nystrom. 2004. VizTree: A tool for visually mining and monitoring massive time-series databases. In Proceedings of the 30th International Conference on Very Large Data Bases-Volume 30. VLDB Endowment, 1269--1272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Michael Ogawa and Kwan-Liu Ma. 2010. Software evolution storylines. In Proceedings of the 5th International Symposium on Software Visualization. ACM, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shneiderman. 1996. LifeLines: Visualizing personal histories. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 221--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Huamin Qu, Wing Yi Chan, Anbang Xu, Kai Lun Chung, Kai Hon Lau, and Ping Guo. 2007. Visual analysis of the air pollution problem in Hong Kong. Trans. Visual. Comput. Graph. 13, 6 (2007), 1408--1415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. S. Quinan and M. Meyer. 2016. Visually comparing weather features in forecasts. Trans. Visual. Comput. Graph. 22, 1 (2016), 389--398.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. William Ribarsky, Zachary Wartell, and Wenwen Dou. 2012. Event structuring as a general approach to building knowledge in time-based collections. In Expanding the Frontiers of Visual Analytics and Visualization. Springer, London, 149--162.Google ScholarGoogle Scholar
  27. Jaume Rigau, Miquel Feixas, and Mateu Sbert. 2005. Shape complexity based on mutual information. In Proceedings of the International Conference Shape Modeling and Applications. IEEE, 355--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Thomas Schreiber. 2000. Measuring information transfer. Phys. Rev. Lett. 85, 2 (2000), 461.Google ScholarGoogle ScholarCross RefCross Ref
  29. R. Sharovsky, L. A. M. César, and J. A. F. Ramires. 2004. Temperature, air pollution, and mortality from myocardial infarction in Sao Paulo, Brazil. Brazil. J. Med. Biol. Res. 37, 11 (2004), 1651--1657.Google ScholarGoogle ScholarCross RefCross Ref
  30. Han-Wei Shen, Ling-Jen Chiang, and Kwan-Liu Ma. 1999. A fast volume rendering algorithm for time-varying fields using a time-space-partitioning (TSP) tree. In Proceedings of the Conference on Visualization: Celebrating Ten Years. IEEE Computer Society Press, 371--377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lei Shi, Qi Liao, Yuan He, Rui Li, Aaron Striegel, and Zhong Su. 2011. SAVE: Sensor anomaly visualization engine. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 201--210.Google ScholarGoogle ScholarCross RefCross Ref
  32. Shigeo Takahashi, Issei Fujishiro, Yuriko Takeshima, and Tomoyuki Nishita. 2005. A feature-driven approach to locating optimal viewpoints for volume visualization. In IEEE Visualization. 495--502.Google ScholarGoogle Scholar
  33. Christian Tominski, James Abello, and Heidrun Schumann. 2004. Axes-based visualizations with radial layouts. In Proceedings of the ACM Symposium on Applied Computing. ACM, 1242--1247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Martin Turon. 2005. MOTE-VIEW: A sensor network monitoring and management tool. In Proceedings of the 2nd IEEE Workshop on Embedded Networked Sensors. 11--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jarke J. Van Wijk and Edward R. Van Selow. 1999. Cluster and calendar based visualization of time-series data. In Proceedings of the IEEE Symposium on Information Visualization. 4--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Péter Völgyesi, András Nádas, Xenofon Koutsoukos, and Ákos Lédecz. 2008. Air quality monitoring with SensorMap. In International Conference on Information Processing in Sensor Networks. 529--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Greg Ver Steeg and Aram Galstyan. 2012. Information transfer in social media. In Proceedings of the 21st International Conference on World Wide Web. ACM, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa. 2011. Transfer entropy—A model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 30, 1 (2011), 45--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ivan Viola, Miquel Feixas, Mateu Sbert, and Meister Eduard Groller. 2006. Importance-driven focus of attention. Trans. Visual. Comput. Graph. 12, 5 (2006), 933--940. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Chaoli Wang and Han-Wei Shen. 2006. LOD map-a visual interface for navigating multiresolution volume visualization. Trans. Visual. Comput. Graph. 12, 5 (2006), 1029--1036. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Chaoli Wang and Han-Wei Shen. 2011. Information theory in scientific visualization. Entropy 13, 1 (2011), 254--273.Google ScholarGoogle ScholarCross RefCross Ref
  42. Chaoli Wang, Hongfeng Yu, Ray W. Grout, Kwan-Liu Ma, and Jacqueline H. Chen. 2011. Analyzing information transfer in time-varying multivariate data. In Proceedings of the IEEE Pacific Visualization Symposium. IEEE, 99--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Chaoli Wang, Hongfeng Yu, and Kwan-Liu Ma. 2008. Importance-driven time-varying data visualization. Trans. Visual. Comput. Graph. 14, 6 (2008), 1547--1554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jingyuan Wang, Robert Sisneros, and Jian Huang. 2013. Interactive selection of multivariate features in large spatiotemporal data. In Proceedings of the IEEE Pacific Visualization Symposium. 145--152.Google ScholarGoogle ScholarCross RefCross Ref
  45. Marc Weber, Marc Alexa, and Wolfgang Muller. 2001. Visualizing time-series on spirals. In Proceedings of the IEEE Symposium on Information Visualization. 7--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Lijie Xu, Teng-Yok Lee, and Han-Wei Shen. 2010. An information-theoretic framework for flow visualization. Trans. Visual. Comput. Graph. 16, 6 (2010), 1216--1224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Li Yu, Aidong Lu, William Ribarsky, and Wei Chen. 2010. Automatic animation for time-varying data visualization. In Proceedings of the Computer Graphics Forum, Vol. 29. Wiley Online Library, 2271--2280.Google ScholarGoogle ScholarCross RefCross Ref
  48. Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. 2013. U-Air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1436--1444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. 2013. U-Air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1436--1444. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Visual Exploration of Air Quality Data with a Time-correlation-partitioning Tree Based on Information Theory

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Interactive Intelligent Systems
      ACM Transactions on Interactive Intelligent Systems  Volume 9, Issue 1
      March 2019
      168 pages
      ISSN:2160-6455
      EISSN:2160-6463
      DOI:10.1145/3312745
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 February 2019
      • Accepted: 1 June 2018
      • Revised: 1 April 2018
      • Received: 1 August 2017
      Published in tiis Volume 9, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format