skip to main content
research-article
Public Access

Creating Thermal Icons—A Model-Based Approach

Published:22 March 2018Publication History
Skip Abstract Section

Abstract

The objective of this set of experiments was to evaluate thermal pattern recognition on the hand and arm and to determine which features of thermal stimuli are encoded by cutaneous thermoreceptors and perceived by the user of a thermal display. Thermal icons were created by varying the direction, rate, and magnitude of change in temperature. It was found that thermal icons were identified more accurately when presented on the thenar eminence or the wrist, as compared to the fingertips and that thermal patterns as brief as 8s could be reliably identified. In these experiments, there was no difference in performance when identifying warm or cool stimuli. A dynamic model of the change in skin temperature as a function of the thermal input was developed based on linear system identification techniques. This model was able to predict the change in skin temperature from an unrelated experiment involving thermal icons. This opens the possibility of using a model-based approach to the development of thermal icons.

References

  1. M. Azadi and L. A. Jones. 2014. Evaluating vibrotactile dimensions for the design of tactons. IEEE Trans. Haptics 7, 14--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. W. M. Bergmann Tiest and A. M. L. Kappers. 2009. Tactile perception of thermal diffusivity. Attent. Percept. Psychophys. 71, 481--489.Google ScholarGoogle ScholarCross RefCross Ref
  3. L. M. Brown, S. A. Brewster, and H. C. Purchase. 2005. A first investigation into the effectiveness of tactons. In Proceedings of the 1st Joint Eurohaptics Conference and the Symposium on Haptic Interfaces for Virtual Environments and Teleoperated Systems. 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. A. Cholewiak, H. Z. Tan, and D. S. Ebert. 2008. Haptic identification of stiffness and force magnitude. In Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 87--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Dionisio, V. Henrich, U. Jakob, A. Rettig, and R. Ziegler. 1997. The virtual touch: Haptic interfaces in virtual environments. Comput. Graph. 21, 459--468.Google ScholarGoogle ScholarCross RefCross Ref
  6. N. I. Durlach, H. Z. Tan, N. A. Macmillan, W. M. Rabinowitz, and L. D. Braida. 1989. Resolution in one dimension with random variations in background dimensions. Percept. Psychophys. 46, 293--296.Google ScholarGoogle ScholarCross RefCross Ref
  7. B. G. Green. 1977. Localization of thermal sensation: An illusion and synthetic heat. Percept. Psychophys. 22, 331--337.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Halvey, M. Henderson, S. A. Brewster, G. Wilson, and S. A. Hughes. 2012. Augmenting media with thermal stimulation. In Proceedings of the Haptic and Audio Interaction Design Conference, LNCS 7468, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. M. Harding and A. R. Loescher. 2005. Adaptation to warming but not cooling at slow rates of stimulus change in thermal threshold measurements. Somatosens. Motor Res. 22, 45--48.Google ScholarGoogle ScholarCross RefCross Ref
  10. H.-N. Ho and L. A. Jones. 2007. Development and evaluation of a thermal display for material identification and discrimination. ACM Trans. Appl. Percept. 4, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H.-N. Ho and L. A. Jones. 2008. Modeling the thermal responses of the skin surface during hand-object interactions. J. Biomech. Eng. 130, 21005-1-8.Google ScholarGoogle ScholarCross RefCross Ref
  12. H.-N. Ho, K. Sato, S. Kuroki, J. Watanabe, T. Maeno, and S. Y. Nishida. 2017. Physical-perceptual correspondence for dynamic thermal stimulation. IEEE Trans. Haptics 10, 84--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. O. Johnson, I. Darian-Smith, and C. LaMotte. 1973. Peripheral neural determinants of temperature discrimination in man: A correlative study of responses to cooling skin. J. Neurophysiol. 36, 347--370.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. A. Jones. 2011. Tactile communication systems: Optimizing the display of information. Progr. Brain Res. 192, 113--128.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. A. Jones and H.-N. Ho. 2008. Warm or cool, large or small? The challenge of thermal displays. IEEE Trans. Haptics 1, 53--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L. A. Jones, J. Kunkel, and E. Piateski. 2009. Vibrotactile pattern recognition on the arm and back. Perception 38, 52--68.Google ScholarGoogle ScholarCross RefCross Ref
  17. L. A. Jones and N. B. Sarter. 2008. Tactile displays: Guidance for their design and application. Human Factors 50, 90--111.Google ScholarGoogle ScholarCross RefCross Ref
  18. L. A. Jones and H. Z. Tan. 2013. Application of psychophysical techniques to haptic research. IEEE Trans. Haptics 6, 268--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. R. Kenshalo. 1976. Correlations of temperature sensitivity in man and monkey, a first approximation. In Sensory Functions of the Skin with Special Reference to Man, Y. Zotterman (Ed.). Pergamon Press, Oxford, 305--330.Google ScholarGoogle Scholar
  20. D. R. Kenshalo, C. E. Homes, and P. B. Wood. 1968. Warm and cool thresholds as a function of rate of stimulus temperature change. Percept. Psychophys. 3, 81--84.Google ScholarGoogle ScholarCross RefCross Ref
  21. D. A. Kron and G. Schmidt. 2003. Multi-fingered tactile feedback from virtual and remote environments. Proceedings of the 11th International Symposium on Haptic Interfaces for Virtual Environments and Teleoperated Systems. 16--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Lecuyer, P. Mobuchon, C. Megard, J. Perret, C. Andriot, and J. Colinot. 2003. Homere: A multimodel system for visually impaired people to explore virtual environments. Proceedings of IEEE Conference on Virtual Reality. 251--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. J. Lederman and R. L. Klatzky. 1997. Relative availability of surface and object properties during early haptic processing. J. Exper. Psychol. Human Percept. Perform. 23, 1680--1707.Google ScholarGoogle ScholarCross RefCross Ref
  24. L. Ljung. 1999. System Identification: Theory for the User. Prentice Hall, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. E. MacLean and J. B. Roderick. 1999. Smart tangible displays in the everyday world: A haptic doorknob. In Proceedings of the IEEE/ASME International Conference in Advanced Intelligent Mechatronics. 203--208.Google ScholarGoogle Scholar
  26. M. Nakashige, M. Kobayashi, Y. Suzuki, H. Tamaki, and S. Higashino. 2009. Hiya-Atsu media: Augmenting digital media with temperature. In Proceedings of the Computer-Human Interaction Conference. 3181--3186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. W. M. Rabinowitz, A. J. M. Houtsma, N. I. Durlach, and L. A. Delhorne. 1987. Multidimensional tactile displays: Identification of vibratory intensity, frequency, and contactor area. J. Acoust. Soc. Amer. 82, 1243--1252.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Singhal and L. A. Jones. 2015. Dimensionality of thermal icons. In Proceedings of the IEEE World Haptics Conference. 469--474.Google ScholarGoogle Scholar
  29. A. Singhal and L. A. Jones. 2016. Space-time interactions and the perceived location of cold stimuli. In Proceedings of the IEEE Haptics Symposium. 92--97.Google ScholarGoogle Scholar
  30. D. C. Spray. 1986. Cutaneous temperature receptors. Annu. Rev. Physiol. 48, 625--638.Google ScholarGoogle ScholarCross RefCross Ref
  31. J. C. Stevens and K. C. Choo. 1998. Temperature sensitivity of the body surface over the life span. Somatosens. Motor Res. 15, 13--28.Google ScholarGoogle ScholarCross RefCross Ref
  32. I. R. Summers, J. J. Whybrow, D. A. Gratton, P. Milnes, B. H. Brown, and J. C. Stevens. 2005. Tactile information transfer: A comparison of two stimulation types. J. Acoust. Soc. Amer. 118, 2527--2534.Google ScholarGoogle ScholarCross RefCross Ref
  33. H. Z. Tan, C. M. Reed, and N. I. Durlach. 2010. Optimum information-transfer rates for communication through haptic and other sensory modalities. IEEE Trans. Haptics 3, 98--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. B. F. Van Erp. 2005. Presenting directions with a vibrotactile torso display. Ergonomics 48, 302--313.Google ScholarGoogle ScholarCross RefCross Ref
  35. R. T. Verrillo, S. J. Bolanowski, C. M. Checkosky, and F. P. McGlone. 1998. Effects of hydration on tactile sensation. Somatosens. Motor Res. 15, 93--108.Google ScholarGoogle ScholarCross RefCross Ref
  36. C. Wall, III and M. S. Weinberg. 2003. Balance prostheses for postural control. IEEE Eng. Med. Biol. Mag. March/April, 84--90.Google ScholarGoogle ScholarCross RefCross Ref
  37. R. Wettach, A. Danielsson, C. Behrens, and T. Ness. 2007. A thermal information display for mobile applications. In Proceedings of the Mobile Human-Computer Interaction Conference. 182--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. Wilson, M. Halvey, S. A. Brewster, and S. A. Hughes. 2011. Some like it hot? Thermal feedback for mobile devices. In Proceedings of the Computer-Human Interaction Conference. 2555--2564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. Wilson, S. Brewster, M. Halvey, and S. Hughes. 2012. Thermal icons: Evaluating structured thermal feedback for mobile interaction. In Proceedings of the Mobile Human Computing Interaction Conference. 309--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. G. Wilson, S. Brewster, M. Halvey, and S. Hughes. 2013. Thermal feedback identification in a mobile environment. In Proceedings of the Haptic and Audio Interaction Design Conference, LNCS 7989, 10--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. Yamamoto, B. Cros, H. Hasgimoto, and T. Higuchi. 2004. Control of thermal tactile display based on prediction of contact temperature. In Proceedings of the International Conference on Robotics and Automation. 1536--1541.Google ScholarGoogle Scholar
  42. G. Yang, L. A. Jones, and D. Kwon. 2008. Use of simulated thermal cues for material discrimination and identification with a multi-fingered display. Presence 17, 29--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. Yarnitsky and J. L. Ochoa. 1991. Warm and cold specific somatosensory systems. Brain 114, 1819--1826.Google ScholarGoogle ScholarCross RefCross Ref
  44. M. Zerkus, B. Becker, J. Ward, and L. Halvorsen. 1994. Thermal feedback in virtual reality and telerobotic systems. In Proceedings of the 4th International Symposium on Measurement and Control in Robotics. 107--113.Google ScholarGoogle Scholar

Index Terms

  1. Creating Thermal Icons—A Model-Based Approach

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Applied Perception
        ACM Transactions on Applied Perception  Volume 15, Issue 2
        April 2018
        104 pages
        ISSN:1544-3558
        EISSN:1544-3965
        DOI:10.1145/3190502
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 March 2018
        • Revised: 1 December 2017
        • Accepted: 1 December 2017
        • Received: 1 May 2017
        Published in tap Volume 15, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader