skip to main content
research-article
Open Access

Polyadic approximations, fibrations and intersection types

Published:27 December 2017Publication History
Skip Abstract Section

Abstract

Starting from an exact correspondence between linear approximations and non-idempotent intersection types, we develop a general framework for building systems of intersection types characterizing normalization properties. We show how this construction, which uses in a fundamental way Melliès and Zeilberger's ``type systems as functors'' viewpoint, allows us to recover equivalent versions of every well known intersection type system (including Coppo and Dezani's original system, as well as its non-idempotent variants independently introduced by Gardner and de Carvalho). We also show how new systems of intersection types may be built almost automatically in this way.

Skip Supplemental Material Section

Supplemental Material

polyadicapproximations.webm

webm

98.5 MB

References

  1. Beniamino Accattoli. 2012. An Abstract Factorization Theorem for Explicit Substitutions. In Proceedings of RTA. 6–21.Google ScholarGoogle Scholar
  2. Henk P. Barendregt. 1984. The Lambda Calculus, Its Syntax and Semantics. Elsevier.Google ScholarGoogle Scholar
  3. Alexis Bernadet and Stéphane Lengrand. 2013. Non-idempotent intersection types and strong normalisation. Logical Methods in Computer Science 9, 4 (2013). Google ScholarGoogle ScholarCross RefCross Ref
  4. Gérard Boudol. 1993. The Lambda-Calculus with Multiplicities (Abstract). In Proceedings of CONCUR. 1–6. Google ScholarGoogle ScholarCross RefCross Ref
  5. Flavien Breuvart and Ugo Dal Lago. 2016. ntersection Types and Probabilistic Lambda Calculi. In Presented at ITRS.Google ScholarGoogle Scholar
  6. Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. 2014. The Inhabitation Problem for Non-idempotent Intersection Types. In Proceedings of IFIP TCS. 341–354. Google ScholarGoogle ScholarCross RefCross Ref
  7. Antonio Bucciarelli, Adolfo Piperno, and Ivano Salvo. 2003. Intersection Types and lambda-Definability. Mathematical Structures in Computer Science 13, 1 (2003), 15–53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Sébastien Carlier, Jeff Polakow, J. B. Wells, and A. J. Kfoury. 2004. System E: Expansion Variables for Flexible Typing with Linear and Non-linear Types and Intersection Types. In Proceedings of ESOP 2004. 294–309. Google ScholarGoogle ScholarCross RefCross Ref
  9. François Conduché. 1972. Au sujet de l’existence d’adjoints à droite aux foncteurs ‘image reciproque’ dans la catégorie des catégories. C. R. Acad. Sci. Paris Série A, 275 (1972), 891–894.Google ScholarGoogle Scholar
  10. Mario Coppo and Mariangiola Dezani-Ciancaglini. 1980. An extension of the basic functionality theory for the λ-calculus. Notre Dame Journal of Formal Logic 21, 4 (1980), 685–693. Google ScholarGoogle ScholarCross RefCross Ref
  11. Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Functional Characters of Solvable Terms. Math. Log. Q. 27, 2-6 (1981), 45–58.Google ScholarGoogle ScholarCross RefCross Ref
  12. Pierre-Louis Curien and Jovana Obradovic. 2017. Categorified cyclic operads. Technical Report 1706.06788 [math.CT]. ArXiv.Google ScholarGoogle Scholar
  13. Daniel de Carvalho. 2009. Execution Time of lambda-Terms via Denotational Semantics and Intersection Types. CoRR abs/0905.4251 (2009).Google ScholarGoogle Scholar
  14. Thomas Ehrhard and Olivier Laurent. 2010. Interpreting a Finitary Pi-Calculus in Differential Interaction Nets. Information and Computation 208, 6 (2010), 606–633. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Thomas Ehrhard and Laurent Regnier. 2008. Uniformity and the Taylor expansion of ordinary lambda-terms. Theor. Comput. Sci. 403, 2–3 (2008), 347–372.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. 1999. Abstract Syntax and Variable Binding. In Proceedings of LICS. 193–202. Google ScholarGoogle ScholarCross RefCross Ref
  17. Philippa Gardner. 1994. Discovering Needed Reductions Using Type Theory. In Proceedings of TACS. 555–574. Google ScholarGoogle ScholarCross RefCross Ref
  18. Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50, 1 (1987), 1–102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Charles Grellois and Paul-André Melliès. 2015. Relational Semantics of Linear Logic and Higher-order Model Checking. In Proceedings of CSL. 260–276.Google ScholarGoogle Scholar
  20. Barney P. Hilken. 1996. Towards a Proof Theory of Rewriting: The Simply Typed 2lambda-Calculus. Theor. Comput. Sci. 170, 1-2 (1996), 407–444.Google ScholarGoogle ScholarCross RefCross Ref
  21. Tom Hirschowitz. 2013. Cartesian closed 2-categories and permutation equivalence in higher-order rewriting. Logical Methods in Computer Science 9, 3 (2013). Google ScholarGoogle ScholarCross RefCross Ref
  22. Martin Hyland. 2017. Classical lambda calculus in modern dress. Math. Struct. Comput. Sci. 27, 5 (2017), 762–781. Google ScholarGoogle ScholarCross RefCross Ref
  23. Delia Kesner and Pierre Vial. 2017. Types as Resources for Classical Natural Deduction. Proceedings of FSCD (to appear) (2017).Google ScholarGoogle Scholar
  24. Assaf J. Kfoury. 2000. A linearization of the Lambda-calculus and consequences. J. Log. Comput. 10, 3 (2000), 411–436. Google ScholarGoogle ScholarCross RefCross Ref
  25. Naoki Kobayashi and C.-H. Luke Ong. 2009. A Type System Equivalent to the Modal Mu-Calculus Model Checking of Higher-Order Recursion Schemes. In Proceedings of LICS. 179–188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jean-Louis Krivine. 1993. Lambda Calculus, Types and Models. Ellis Horwood.Google ScholarGoogle Scholar
  27. Olivier Laurent. 2003. Polarized proof-nets and lambda-mu-calculus. Theor. Comput. Sci. 290, 1 (2003), 161–188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Olivier Laurent. 2004. On the denotational semantics of the untyped lambda-mu calculus. (2004). Unpublished note.Google ScholarGoogle Scholar
  29. Tom Leinster. 2004. Higher Operads, Higher Categories. Cambridge University Press. Google ScholarGoogle ScholarCross RefCross Ref
  30. Damiano Mazza. 2012. An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus. In Proceedings of LICS. 471–480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Paul-André Melliès, Nicolas Tabareau, and Christine Tasson. 2009. An Explicit Formula for the Free Exponential Modality of Linear Logic. In Proc. ICALP 2009. 247–260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Paul-André Melliès and Noam Zeilberger. 2015. Functors are Type Refinement Systems. In Proceedings of POPL. 3–16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Peter Møller Neergaard and Harry G. Mairson. 2004. Types, potency, and idempotency: why nonlinearity and amnesia make a type system work. In Proceedings of ICFP. 138–149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Susan Niefield. 2004. Change of Base for Relational Variable Sets. Theory Appl. Categ. 12, 7 (2004), 248–261.Google ScholarGoogle Scholar
  35. Michel Parigot. 1992. λµ-Calculus: An algorithmic interpretation of classical natural deduction. Springer Berlin Heidelberg, Berlin, Heidelberg, 190–201. Google ScholarGoogle ScholarCross RefCross Ref
  36. Luc Pellissier. 2017. Réductions et approximations linéaires. PhD. Thesis. Université Paris 13.Google ScholarGoogle Scholar
  37. Laurent Regnier. 1992. Lambda-calcul et réseaux. PhD Thesis. Université Paris 7.Google ScholarGoogle Scholar
  38. R. A. G. Seely. 1987. Modelling Computations: A 2-Categorical Framework. In Proceedings of LICS. 65–71.Google ScholarGoogle Scholar
  39. Terese. 2003. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, Vol. 55. Cambridge University Press.Google ScholarGoogle Scholar
  40. Steffen van Bakel. 1995. Intersection Type Assignment Systems. Theor. Comput. Sci. 151, 2 (1995), 385–435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pierre Vial. 2017. Infinitary intersection types as sequences: A new answer to Klop’s problem. In Proceedings of LICS. 1–12. Google ScholarGoogle ScholarCross RefCross Ref
  42. Christopher P. Wadsworth. 1971. Semantics and Pragmatics of the Lambda Calculus. PhD Thesis. University of Oxford.Google ScholarGoogle Scholar

Index Terms

  1. Polyadic approximations, fibrations and intersection types

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Proceedings of the ACM on Programming Languages
        Proceedings of the ACM on Programming Languages  Volume 2, Issue POPL
        January 2018
        1961 pages
        EISSN:2475-1421
        DOI:10.1145/3177123
        Issue’s Table of Contents

        Copyright © 2017 Owner/Author

        This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 December 2017
        Published in pacmpl Volume 2, Issue POPL

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader