skip to main content
survey
Public Access

Network Structure Inference, A Survey: Motivations, Methods, and Applications

Published:17 April 2018Publication History
Skip Abstract Section

Abstract

Networks represent relationships between entities in many complex systems, spanning from online social interactions to biological cell development and brain connectivity. In many cases, relationships between entities are unambiguously known: are two users “friends” in a social network? Do two researchers collaborate on a published article? Do two road segments in a transportation system intersect? These are directly observable in the system in question. In most cases, relationships between nodes are not directly observable and must be inferred: Does one gene regulate the expression of another? Do two animals who physically co-locate have a social bond? Who infected whom in a disease outbreak in a population?

Existing approaches for inferring networks from data are found across many application domains and use specialized knowledge to infer and measure the quality of inferred network for a specific task or hypothesis. However, current research lacks a rigorous methodology that employs standard statistical validation on inferred models. In this survey, we examine (1) how network representations are constructed from underlying data, (2) the variety of questions and tasks on these representations over several domains, and (3) validation strategies for measuring the inferred network’s capability of answering questions on the system of interest.

References

  1. Eytan Adar and Lada A. Adamic. 2005. Tracking information epidemics in blogspace. In Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence. 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Charu Aggarwal and Karthik Subbian. 2014. Evolutionary network analysis: A survey. ACM Comput. Surv. 47, 1 (May 2014), 10:1--10:36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland. 2011. Social fMRI: Investigating and shaping social mechanisms in the real world. Pervas. Mobil. Comput. 7, 6 (Dec. 2011), 643--659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Genevera I. Allen and Zhandong Liu. 2012. A log-linear graphical model for inferring genetic networks from high-throughput sequencing data. In Proceedings of the 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM’12). IEEE Computer Society, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Lucy M. Aplin, Damien R. Farine, Julie Morand-Ferron, Andrew Cockburn, Alex Thornton, and Ben C. Sheldon. 2015. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 7540 (Feb. 2015), 538--541.Google ScholarGoogle ScholarCross RefCross Ref
  6. Lucy M. Aplin, Damien R. Farine, Julie Morand-Ferron, and Ben C. Sheldon. 2012. Social networks predict patch discovery in a wild population of songbirds. Proceedings of the Royal Society of London B: Biological Sciences (2012).Google ScholarGoogle Scholar
  7. Mahmoudreza Babaei, Przemyslaw Grabowicz, Isabel Valera, Krishna P. Gummadi, and Manuel Gomez-Rodriguez. 2016. On the efficiency of the information networks in social media. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM’16). ACM, 83--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lars Backstrom and Jon Kleinberg. 2011. Network bucket testing. In Proceedings of the 20th International Conference on World Wide Web (WWW’11). ACM, 615--624. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Shweta Bansal, Bryan T. Grenfell, and Lauren Ancel Meyers. 2007. When individual behaviour matters: Homogeneous and network models in epidemiology. J. Roy. Soc. Interface 4, 16 (2007), 879--891.Google ScholarGoogle ScholarCross RefCross Ref
  10. Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon. 2012. Studying and modelling dynamic biological processes using time-series gene expression data. Nature Rev. Genet. 13, 8 (Aug. 2012), 552--564.Google ScholarGoogle ScholarCross RefCross Ref
  11. Alain Barrat, Ciro Cattuto, Vittoria Colizza, Jean-François Pinton, Wouter Van den Broeck, and Alessandro Vespignani. 2008. High resolution dynamical mapping of social interactions with active RFID. ArXiv e-prints (Nov. 2008). http://arxiv.org/abs/0811.4170v2Google ScholarGoogle Scholar
  12. Louise Barrett, Peter Henzi, and David Lusseau. 2012. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. Roy. Soc. London B: Biol. Sci. 367, 1599 (2012), 2108--2118.Google ScholarGoogle ScholarCross RefCross Ref
  13. Tanya Barrett, Stephen E. Wilhite, Pierre Ledoux, Carlos Evangelista, Irene F. Kim, Maxim Tomashevsky, Kimberly A. Marshall, Katherine H. Phillippy, Patti M. Sherman, Michelle Holko, Andrey Yefanov, Hyeseung Lee, Naigong Zhang, Cynthia L. Robertson, Nadezhda Serova, Sean Davis, and Alexandra Soboleva. 2013. NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Res. 41, D1 (2013), D991--D995.Google ScholarGoogle ScholarCross RefCross Ref
  14. Baruch Barzel and Albert-Laszlo Barabasi. 2013. Network link prediction by global silencing of indirect correlations. Nature Biotechnol. 31, 8 (Aug. 2013), 720--725.Google ScholarGoogle ScholarCross RefCross Ref
  15. Lars Bejder, David Fletcher, and Stefan Bräger. 1998. A method for testing association patterns of social animals. Animal Behav. 56, 3 (1998), 719--725.Google ScholarGoogle ScholarCross RefCross Ref
  16. David C. Bell, John S. Atkinson, and Jerry W. Carlson. 1999. Centrality measures for disease transmission networks. Social Networks 21, 1 (1999), 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  17. Tanya Y. Berger-Wolf, Daniel I. Rubenstein, Charles V. Stewart, Jason A. Holmberg, Jason Parham, Sreejith Menon, Jonathan Crall, Jon Van Oast, Emre Kiciman, and Lucas Joppa. 2017. Wildbook: Crowdsourcing, computer vision, and data science for conservation. ArXiv e-prints (Oct. 2017). https://arxiv.org/abs/1710.08880Google ScholarGoogle Scholar
  18. Stephan Bialonski, Martin Wendler, and Klaus Lehnertz. 2011. Unraveling spurious properties of interaction networks with tailored random networks. PLoS ONE 6, 8 (Aug. 2011), e22826.Google ScholarGoogle ScholarCross RefCross Ref
  19. Concha Bielza and Pedro Larrañaga. 2014. Bayesian networks in neuroscience: A survey. Front. Comput. Neurosci. 8 (Oct. 2014), 131.Google ScholarGoogle Scholar
  20. Vincent D. Blondel, Adeline Decuyper, and Gautier Krings. 2015. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 1 (2015), 1--55.Google ScholarGoogle ScholarCross RefCross Ref
  21. Vincent D. Blondel, Gautier Krings, and Isabelle Thomas. 2010. Regions and borders of mobile telephony in belgium and in the brussels metropolitan zone. Brussels Studies (2010). https://doi.org/2078.1/95261Google ScholarGoogle Scholar
  22. Stefano Boccaletti, Ginestra Bianconi, Regino Criado Herrero, Charo I. del Genio, Jesus Gómez-Gardeñes, Miguel Romance, Irene Sendiña-Nadal, Zhen Wang, and Massimiliano Zanin. 2014. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1 (2014), 1--122.Google ScholarGoogle ScholarCross RefCross Ref
  23. Michael Boots and Akira Sasaki. 1999. “Small worlds” and the evolution of virulence: Infection occurs locally and at a distance. Philos. Trans. Roy. Soc. London B: Biol. Sci. 266, 1432 (1999), 1933--1938.Google ScholarGoogle Scholar
  24. Ulrik Brandes, Garry Robins, Ann Mccranie, and Stanley Wasserman. 2013. What is network science? Network Sci. 1, 1 (2013), 1--15.Google ScholarGoogle ScholarCross RefCross Ref
  25. Fred Brauer. 2008. Compartmental Models in Epidemiology. Springer, Berlin, 19--79.Google ScholarGoogle Scholar
  26. Tom Britton and Philip D. O’Neill. 2002. Bayesian inference for stochastic epidemics in populations with random social structure. Scand. J. Stat. 29, 3 (Sept. 2002), 375--390.Google ScholarGoogle ScholarCross RefCross Ref
  27. Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. 2011. Handbook of Markov Chain Monte Carlo. CRC Press. 2011021891 https://books.google.com/books?id=qfRsAIKZ4rIC.Google ScholarGoogle ScholarCross RefCross Ref
  28. Ivan Brugere and Tanya Y. Berger-Wolf. 2017. Network model selection using task-focused minimum description length. ArXiv e-prints (Oct. 2017). https://arxiv.org/abs/1710.05207Google ScholarGoogle Scholar
  29. Ivan Brugere, Chris Kanich, and Tanya Y. Berger-Wolf. 2017. Evaluating social networks using task-focused network inference. In Proceedings of the 13th International Workshop on Mining and Learning with Graphs (MLG’17). https://arxiv.org/abs/1707.02385Google ScholarGoogle Scholar
  30. Ivan Brugere, Chris Kanich, and Tanya Y. Berger-Wolf. 2017. Network model selection for task-focused attributed network inference. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshop (ICDMW’17). https://arxiv.org/abs/1708.06303Google ScholarGoogle Scholar
  31. Ed Bullmore and Olaf Sporns. 2009. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 3 (Mar. 2009), 186--198.Google ScholarGoogle Scholar
  32. Atul J. Butte and Isaac S. Kohane. 2000. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pacific Symp. Biocomput. 5 (2000), 415--426.Google ScholarGoogle Scholar
  33. Leila Cammoun, Xavier Gigandet, Djalel Meskaldji, Jean Philippe Thiran, Olaf Sporns, Kim Q. Do, Philippe Maeder, Reto Meuli, and Patric Hagmann. 2012. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 2 (2012), 386--397.Google ScholarGoogle ScholarCross RefCross Ref
  34. Bokai Cao, Lifang He, Xiaokai Wei, Mengqi Xing, Philip S. Yu, Heide Klumpp, and Alex D. Leow. 2017. t-BNE: Tensor-based Brain Network Embedding. 189--197.Google ScholarGoogle Scholar
  35. Longbing Cao. 2017. Data science: A comprehensive overview. ACM Comput. Surv. 50, 3, Article 43 (June 2017), 42 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ciro Cattuto, Wouter Van den Broeck, Alain Barrat, Vittoria Colizza, Jean-François Pinton, and Alessandro Vespignani. 2010. Dynamics of person-to-person interactions from distributed RFID sensor networks. PLOS ONE 5, 7 (July 2010), e11596.Google ScholarGoogle ScholarCross RefCross Ref
  37. Hau Chan, Hanghang Tong, and Leman Akoglu. 2014. Make it or break it: Manipulating robustness in large networks. In Proceedings of the 2014 SIAM International Conference on Data Mining. 325--333.Google ScholarGoogle ScholarCross RefCross Ref
  38. Darren P. Croft, Jens Krause, Safi K. Darden, Indar W. Ramnarine, Jolyon J. Faria, and Richard James. 2009. Behavioural trait assortment in a social network: Patterns and implications. Behav. Ecol. Sociobiol. 63, 10 (2009), 1495--1503.Google ScholarGoogle ScholarCross RefCross Ref
  39. Darren P. Croft, Joah R. Madden, Daniel W. Franks, and Richard James. 2011. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 10 (2011), 502--507.Google ScholarGoogle ScholarCross RefCross Ref
  40. Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A survey on network embedding. ArXiv e-prints (Nov. 2017). https://arxiv.org/abs/1711.08752Google ScholarGoogle Scholar
  41. Luciano da Fontoura Costa, Osvaldo N. Oliveira Jr., Gonzalo Travieso, Francisco Aparecido Rodrigues, Paulino Ribeiro Villas Boas, Lucas Antiqueira, Matheus Palhares Viana, and Luis Enrique Correa Rocha. 2011. Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Adv. Phys. 60, 3 (2011), 329--412.Google ScholarGoogle ScholarCross RefCross Ref
  42. E. Damaraju, E. A. Allen, A. Belger, J. M. Ford, S. McEwen, D. H. Mathalon, B. A. Mueller, G. D. Pearlson, S. G. Potkin, A. Preda, J. A. Turner, J. G. Vaidya, T. G. van Erp, and V. D. Calhoun. 2014. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clin. 5 (2014), 298--308.Google ScholarGoogle ScholarCross RefCross Ref
  43. Leon Danon, Ashley P. Ford, Thomas House, Chris P. Jewell, Matt J. Keeling, Gareth O. Roberts, Joshua V. Ross, and Matthew C. Vernon. 2011. Networks and the epidemiology of infectious disease. In Interdisciplinary Perspectives on Infectious Diseases, Vol. 2011.Google ScholarGoogle Scholar
  44. Olivier David, Isabelle Guillemain, Sandrine Saillet, Sebastien Reyt, Colin Deransart, Christoph Segebarth, and Antoine Depaulis. 2008. Identifying neural drivers with functional MRI: An electrophysiological validation. PLoS Biol. 6, 12 (Dec. 2008), e315.Google ScholarGoogle ScholarCross RefCross Ref
  45. Munmun De Choudhury, Winter A. Mason, Jake M. Hofman, and Duncan J. Watts. 2010. Inferring relevant social networks from interpersonal communication. In Proceedings of the 19th International Conference on World Wide Web (WWW’10). ACM, 301--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen, and Vincent D. Blondel. 2013. Unique in the crowd: The privacy bounds of human mobility. Nature Sci. Rep. 3 (Mar 2013), 1376.Google ScholarGoogle Scholar
  47. Shermin de Silva, Ashoka D. G. Ranjeewa, and Sergey Kryazhimskiy. 2011. The dynamics of social networks among female Asian elephants. BMC Ecol. 11, 1 (2011), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  48. Mukeshwar Dhamala, Govindan Rangarajan, and Mingzhou Ding. 2008. Analyzing information flow in brain networks with nonparametric granger causality. NeuroImage 41, 2 (2008), 354--362.Google ScholarGoogle ScholarCross RefCross Ref
  49. Jonathan F. Donges, Yong Zou, Norbert Marwan, and Juergen Kurths. 2009. Complex networks in climate dynamics. Eur. Phys. J. Special Topics 174, 1 (2009), 157--179.Google ScholarGoogle ScholarCross RefCross Ref
  50. Jonathan F. Donges, Yong Zou, Norbert Marwan, and Juergen Kurths. 2009. The backbone of the climate network. Europhys. Lett. 87, 4 (2009), 48007.Google ScholarGoogle ScholarCross RefCross Ref
  51. Nan Du, Le Song, Ming Yuan, and Alex J. Smola. 2012. Learning networks of heterogeneous influence. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). 2780--2788. http://papers.nips.cc/paper/4582-learning-networks-of-heterogeneous-influence. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Robin M. Dunbar. 1992. Time: A hidden constraint on the behavioural ecology of baboons. Behav. Ecol. Sociobiol. 31, 1 (01 Jul 1992), 35--49.Google ScholarGoogle Scholar
  53. Nathan Eagle and Alex Sandy Pentland. 2009. Eigenbehaviors: Identifying structure in routine. Behav. Ecol. Sociobiol. 63, 7 (2009), 1057--1066.Google ScholarGoogle ScholarCross RefCross Ref
  54. Nathan Eagle and Alex (Sandy) Pentland. 2006. Reality mining: Sensing complex social systems. Personal Ubiq. Comput. 10, 4 (Mar. 2006), 255--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Imme Ebert-Uphoff and Yi Deng. 2012. Causal discovery for climate research using graphical models. J. Climate 25, 17 (Feb. 2012), 5648--5665.Google ScholarGoogle ScholarCross RefCross Ref
  56. Bradley Efron and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. Chapman 8 Hall.Google ScholarGoogle Scholar
  57. Jeremiah J. Faith, Boris Hayete, Joshua T. Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume Cottarel, Simon Kasif, James J. Collins, and Timothy S. Gardner. 2007. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 1 (Jan. 2007), e8.Google ScholarGoogle ScholarCross RefCross Ref
  58. Damien R. Farine. 2017. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 10 (2017), 1309--1320.Google ScholarGoogle ScholarCross RefCross Ref
  59. Damien R. Farine, Ariana Strandburg-Peshkin, Tanya Y. Berger-Wolf, Brian Ziebart, Ivan Brugere, Jia Li, and Margaret C. Crofoot. 2016. Both nearest neighbours and long-term affiliates predict individual locations during collective movement in wild baboons, In Nature Scientific Reports. Sci. Rep. 6, 27704.Google ScholarGoogle ScholarCross RefCross Ref
  60. Damien R. Farine and Hal Whitehead. 2015. Constructing, conducting and interpreting animal social network analysis. J. Animal Ecol. 84, 5 (2015), 1144--1163.Google ScholarGoogle ScholarCross RefCross Ref
  61. Soheil Feizi, Daniel Marbach, Muriel Medard, and Manolis Kellis. 2013. Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotech. 31, 8 (Aug. 2013), 726--733.Google ScholarGoogle ScholarCross RefCross Ref
  62. Benjamin Fish and Rajmonda S. Caceres. 2017. A task-driven approach to timescale detection in dynamic networks. In Proceedings of the 13th International Workshop on Mining and Learning with Graphs (MLG’17). http://www.mlgworkshop.org/2017/paper/MLG2017_paper_17.pdf.Google ScholarGoogle Scholar
  63. Robert J. Fletcher, Miguel A. Acevedo, Brian E. Reichert, Kyle E. Pias, and Wiley M. Kitchens. 2011. Social network models predict movement and connectivity in ecological landscapes. Proc. Natl. Acad. Sci. U.S.A. 108, 48 (2011), 19282--19287.Google ScholarGoogle ScholarCross RefCross Ref
  64. Karl J. Friston, Baojuan Li, Jean Daunizeau, and Klaas E. Stephan. 2011. Network discovery with DCM. NeuroImage 56, 3 (Jun. 2011), 1202--1221.Google ScholarGoogle ScholarCross RefCross Ref
  65. Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar. 2007. Probabilistic relational models. Introduction to Statistical Relational Learning (2007), 129. https://mitpress.mit.edu/books/introduction-statistical-relational-learning.Google ScholarGoogle ScholarCross RefCross Ref
  66. Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, and Edoardo M. Airoldi. 2010. A survey of statistical network models. Found. Trends Mach. Learn. 2, 2 (Feb. 2010), 129--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Manuel Gomez-Rodriguez, Jure Leskovec, David Balduzzi, and Bernhard Schölkopf. 2014. Uncovering the structure and temporal dynamics of information propagation. Network Sci. 2, 1, 26--65.Google ScholarGoogle ScholarCross RefCross Ref
  68. Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. 2012. Inferring networks of diffusion and influence. ACM Trans. Knowl. Discov. Data 5, 4 (Feb. 2012), 21:1--21:37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Neil Zhenqiang Gong, Ameet Talwalkar, Lester Mackey, Ling Huang, Eui Chul Richard Shin, Emil Stefanov, Elaine (Runting) Shi, and Dawn Song. 2014. Joint link prediction and attribute inference using a social-attribute network. ACM Trans. Intell. Syst. Technol. 5, 2 (Apr. 2014), 27:1--27:20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Palash Goyal and Emilio Ferrara. 2017. Graph embedding techniques, applications, and performance: A survey. CoRR abs/1705.02801 (2017). http://arxiv.org/abs/1705.02801Google ScholarGoogle Scholar
  71. Clive W. J. Granger. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 3 (1969), 424--438. 00129682, 14680262Google ScholarGoogle ScholarCross RefCross Ref
  72. Michael D. Greicius, Ben Krasnow, Allan L. Reiss, and Vinod Menon. 2003. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 1 (2003), 253--258.Google ScholarGoogle ScholarCross RefCross Ref
  73. Chris Groendyke, David Welch, and David R. Hunter. 2011. Bayesian inference for contact networks given epidemic data. Scand. J. Stat. 38, 3 (Sept. 2011), 600--616.Google ScholarGoogle Scholar
  74. Huan Gui, Ya Xu, Anmol Bhasin, and Jiawei Han. 2015. Network A/B testing: From sampling to estimation. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). ACM, 399--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Hamed Haddadi, Andrew J. King, Alison P. Wills, Damien Fay, John Lowe, A. Jennifer Morton, Stephen Hailes, and Alan M. Wilson. 2011. Determining association networks in social animals: Choosing spatial-temporal criteria and sampling rates. Behav. Ecol. Sociobiol. 65, 8 (2011), 1659--1668.Google ScholarGoogle ScholarCross RefCross Ref
  76. Hamed Haddadi, Miguel Rio, Gianluca Iannaccone, Andrew Moore, and Richard Mortier. 2008. Network topologies: Inference, modeling, and generation. IEEE Commun. Surveys Tutor. 10, 2 (2008), 48--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Rodrigo K. Hamede, Jim Bashford, Hamish McCallum, and Menna Jones. 2009. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 11 (2009), 1147--1157.Google ScholarGoogle ScholarCross RefCross Ref
  78. William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on graphs: Methods and applications. ArXiv e-prints (Sept. 2017). https://arxiv.org/abs/1709.05584Google ScholarGoogle Scholar
  79. Mohammad Al Hasan and Mohammed J. Zaki. 2011. A survey of link prediction in social networks. In Social Network Data Analytics SE - 9, Charu C. Aggarwal (Ed.). Springer US, 243--275.Google ScholarGoogle Scholar
  80. Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, and Jean-Philippe Vert. 2012. TIGRESS: Trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 1 (2012), 145.Google ScholarGoogle ScholarCross RefCross Ref
  81. S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. W. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugali, and S. Solomon. 2012. Challenges in network science: Applications to infrastructures, climate, social systems and economics. Eur. Phys. J. Special Topics 214, 1 (2012), 273--293.Google ScholarGoogle ScholarCross RefCross Ref
  82. D. T. Haydon, M. Chase-Topping, D. J. Shaw, L. Matthews, J. K. Friar, J. Wilesmith, and M. E. J. Woolhouse. 2003. The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak. Proc. Roy. Soc. London B: Biol. Sci. 270, 1511 (Jan. 2003), 121--127.Google ScholarGoogle ScholarCross RefCross Ref
  83. Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene van Someren, and Reinhard Guthke. 2009. Gene regulatory network inference: Data integration in dynamic models--A review. Biosystems 96, 1 (2009), 86--103.Google ScholarGoogle ScholarCross RefCross Ref
  84. Anthony Hey, Stewart Tansley, and Kristin Tolle. 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.Google ScholarGoogle Scholar
  85. Jaroslav Hlinka, David Hartman, Martin Vejmelka, Jakob Runge, Norbert Marwan, Jürgen Kurths, and Milan Paluš. 2013. Reliability of inference of directed climate networks using conditional mutual information. Entropy 15, 6 (2013), 2023.Google ScholarGoogle ScholarCross RefCross Ref
  86. Jake M. Hofman and Chris H. Wiggins. 2008. Bayesian approach to network modularity. Phys. Rev. Lett. 100, 25 (Jun. 2008), 258701.Google ScholarGoogle ScholarCross RefCross Ref
  87. Petter Holme. 2015. Modern temporal network theory: A colloquium. Eur. Phys. J. B. 88, 9 (2015), 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  88. Petter Holme and Jari Saramäki. 2012. Temporal networks. Phys. Rep. 519, 3 (2012), 97--125.Google ScholarGoogle ScholarCross RefCross Ref
  89. R. Matthew Hutchison, Thilo Womelsdorf, Elena A. Allen, Peter A. Bandettini, Vince D. Calhoun, Maurizio Corbetta, Stefania Della Penna, Jeff H. Duyn, Gary H. Glover, Javier Gonzalez-Castillo, Daniel A. Handwerker, Shella Keilholz, Vesa Kiviniemi, David A. Leopold, Francesco de Pasquale, Olaf Sporns, Martin Walter, and Catie Chang. 2013. Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage 80 (Oct. 2013), 360--378.Google ScholarGoogle Scholar
  90. Alon Itai and Michael Rodeh. 1978. Finding a minimum circuit in a graph. SIAM J. Comput. 7, 4 (Nov. 1978), 413--423.Google ScholarGoogle ScholarCross RefCross Ref
  91. Richard James, Darren P. Croft, and Jens Krause. 2009. Potential banana skins in animal social network analysis. Behav. Ecol. Sociobiol. 63, 7 (2009), 989--997.Google ScholarGoogle ScholarCross RefCross Ref
  92. Jaya Kawale, Snigdhansu Chatterjee, Dominick Ormsby, Karsten Steinhaeuser, Stefan Liess, and Vipin Kumar. 2012. Testing the significance of spatio-temporal teleconnection patterns. In Proceedings of ACM SIGKDD 2012 International Conference on Knowledge Discovery and Data Mining (KDD’12). ACM, 642--650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Jaya Kawale, Stefan Liess, Arjun Kumar, Michael Steinbach, Peter Snyder, Vipin Kumar, Auroop R. Ganguly, Nagiza F. Samatova, and Fredrick Semazzi. 2013. A graph-based approach to find teleconnections in climate data. Stat. Anal. Data Min. 6, 3 (2013), 158--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Roland Kays, Margaret C. Crofoot, Walter Jetz, and Martin Wikelski. 2015. Terrestrial animal tracking as an eye on life and planet. Science 348, 6240 (2015).Google ScholarGoogle Scholar
  95. Matt J. Keeling and Ken T. D. Eames. 2005. Networks and epidemic models. J. Roy. Soc. Interface 2, 4 (Sept. 2005), 295--307.Google ScholarGoogle ScholarCross RefCross Ref
  96. David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network. In Proceedings of ACM SIGKDD 2003 International Conference on Knowledge Discovery and Data Mining (KDD’03). ACM, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Angelika Kimmig, Lilyana Mihalkova, and Lise Getoor. 2014. Lifted graphical models: A survey. Mach. Learn. 99, 1 (2014), 1--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno, and Mason A. Porter. 2014. Multilayer networks. J. Complex Networks 2, 3 (2014), 203--271.Google ScholarGoogle ScholarCross RefCross Ref
  99. Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I. Jordan. 2014. A scalable bootstrap for massive data. J. Roy. Stat. Soc.: Series B (Statistical Methodology) 76, 4 (2014), 795--816.Google ScholarGoogle ScholarCross RefCross Ref
  100. Florian Klimm, Danielle S. Bassett, Jean M. Carlson, and Peter J. Mucha. 2014. Resolving structural variability in network models and the brain. PLoS Comput. Biol. 10, 3 (Mar. 2014), e1003491.Google ScholarGoogle ScholarCross RefCross Ref
  101. Bryan Klimt and Yiming Yang. 2004. The enron corpus: A new dataset for email classification research. In Proceedings of the Conference on Machine Learning (ECML’04). Springer, 217--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann. 2013. Online controlled experiments at large scale. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13). ACM, New York, NY, 1168--1176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Eric D. Kolaczyk. 2009. Network topology inference. In Statistical Analysis of Network Data SE-7. Springer, New York, 1--48.Google ScholarGoogle Scholar
  104. Mark A. Kramer, Uri T. Eden, Sydney S. Cash, and Eric D. Kolaczyk. 2009. Network inference with confidence from multivariate time series. Phys. Rev. E. 79, 6 (Jun. 2009), 61916.Google ScholarGoogle ScholarCross RefCross Ref
  105. Mark A. Kramer, Eric D. Kolaczyk, and Heidi E. Kirsch. 2008. Emergent network topology at seizure onset in humans. Epilepsy Res. 79, 2--3 (2008), 173--186.Google ScholarGoogle ScholarCross RefCross Ref
  106. Jens Krause, Stefan Krause, Robert Arlinghaus, Ioannis Psorakis, Stephen Roberts, and Christian Rutz. 2013. Reality mining of animal social systems. Trends Ecol. Evol. 28, 9 (Sept. 2013), 541--551.Google ScholarGoogle ScholarCross RefCross Ref
  107. Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge. 2016. Using causal effect networks to analyze different arctic drivers of mid-latitude winter circulation. J. Climate (Mar 2016).Google ScholarGoogle Scholar
  108. Timothy La Fond and Jennifer Neville. 2010. Randomization tests for distinguishing social influence and homophily effects. In Proceedings of the 19th International Conference on World Wide Web (WWW’10). ACM, 601--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Jean-Philippe Lachaux, Antoine Lutz, David Rudrauf, Diego Cosmelli, Michel Le Van Quyen, Jacques Martinerie, and Francisco Varela. 2002. Estimating the time-course of coherence between single-trial brain signals: An introduction to wavelet coherence. Neurophys. Clin./Clin. Neurophysiol. 32, 3 (Jun. 2002), 157--174.Google ScholarGoogle Scholar
  110. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. 2010. A survey of mobile phone sensing. IEEE Commun. Mag. 48, 9 (Sept. 2010), 140--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Juha K. Laurila, Daniel Gatica-Perez, Imad Aad, Jan Blom, Olivier Bornet, Trinh Minh Tri Do, Olivier Dousse, Julien Eberle, and Markus Miettinen. 2013. From big smartphone data to worldwide research: The mobile data challenge. Pervas. Mobile Comput. 9, 6 (Dec. 2013), 752--771. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. David Lazer. 2011. Networks in political science: Back to the future. Polit. Sci. Pol. 44, 01 (2011), 61--68.Google ScholarGoogle ScholarCross RefCross Ref
  113. Sophie Lebre, Jennifer Becq, Frederic Devaux, Michael Stumpf, and Gaelle Lelandais. 2010. Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst. Biol. 4, 1 (2010), 130.Google ScholarGoogle ScholarCross RefCross Ref
  114. Jure Leskovec and Eric Horvitz. 2014. Geospatial structure of a planetary-scale social network. IEEE Trans. Comput. Social Syst. 1, 3 (Sept. 2014), 156--163.Google ScholarGoogle ScholarCross RefCross Ref
  115. S. Levitus, J. I. Antonov, O. K. Baranova, T. P. Boyer, C. L. Coleman, H. E. Garcia, A. I. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, J. R. Reagan, C. L. Sazama, D. Seidov, I. Smolyar, E. S. Yarosh, and M. M. Zweng. 2013. The world ocean database. Data Sci. J. 12 (2013), WDS229--WDS234.Google ScholarGoogle Scholar
  116. Huai Li, Jianhua Xuan, Yue Wang, and Ming Zhan. 2008. Inferring regulatory networks. Front. Biosci. 13 (2008), 263--275.Google ScholarGoogle ScholarCross RefCross Ref
  117. David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for social networks. J. Amer. Soc. Info. Sci. Technol. 58, 7 (May 2007), 1019--1031. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey. Physica A: Stat. Mech. Appl. 390, 6 (2011), 1150--1170.Google ScholarGoogle ScholarCross RefCross Ref
  119. Subramani Mani and Gregory F. Cooper. 2004. Causal discovery using a bayesian local causal discovery algorithm. Studies Health Technol. Info. 107, Pt 1 (2004), 731--735.Google ScholarGoogle Scholar
  120. Daniel Marbach, James C. Costello, Robert Kuffner, Nicole M. Vega, Robert J. Prill, Diogo M. Camacho, Kyle R. Allison, Manolis Kellis, James J. Collins, and Gustavo Stolovitzky. 2012. Wisdom of crowds for robust gene network inference. Nature Methods 9, 8 (Aug. 2012), 796--804.Google ScholarGoogle ScholarCross RefCross Ref
  121. Rossana Mastrandrea, Julie Fournet, and Alain Barrat. 2015. Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 10, 9 (Sept. 2015), e0136497.Google ScholarGoogle ScholarCross RefCross Ref
  122. Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks of substitutable and complementary products. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). ACM, 785--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. David B. McDonald. 2007. Predicting fate from early connectivity in a social network. Proc. Natl. Acad. Sci. U.S.A. 104, 26 (Jun. 2007), 10910--10914.Google ScholarGoogle ScholarCross RefCross Ref
  124. Christopher Meek. 1995. Causal inference and causal explanation with background knowledge. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI’95). Morgan Kaufmann Publishers Inc., 403--410. http://dl.acm.org/citation.cfm?id=2074204 Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Patrick Meyer, Kevin Kontos, Frederic Lafitte, and Gianluca Bontempi. 2007. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinfo. Syst. Biol. 2007, 1 (2007), 79879. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Lauren Ancel Meyers, Babak Pourbohloul, M. E. J. Newman, Danuta M. Skowronski, and Robert C. Brunham. 2005. Network theory and SARS: Predicting outbreak diversity. J. Theoret. Biol. 232, 1 (2005), 71--81.Google ScholarGoogle ScholarCross RefCross Ref
  127. Isobel Milns, Colin M. Beale, and V. Anne Smith. 2010. Revealing ecological networks using Bayesian network inference algorithms. Ecology 91, 7 (Feb. 2010), 1892--1899.Google ScholarGoogle ScholarCross RefCross Ref
  128. Sach Mukherjee and Terence P. Speed. 2008. Network inference using informative priors. Proc. Natl. Acad. Sci. U.S.A. 105, 38 (Sept. 2008), 14313--14318.Google ScholarGoogle ScholarCross RefCross Ref
  129. Seth Myers and Jure Leskovec. 2010. On the convexity of latent social network inference. In Advances in Neural Information Processing Systems 23. 1741--1749. http://papers.nips.cc/paper/4113-on-the-convexity-of-latent-social-network-inference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Galileo Mark Namata, Ben London, and Lise Getoor. 2015. Collective graph identification. ACM Transactions on Knowledge Discovery from Data. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of approximations for maximizing submodular set functions--I. Math. Program. 14, 1 (1978), 265--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Praneeth Netrapalli and Sujay Sanghavi. 2012. Learning the graph of epidemic cascades. SIGMETRICS Perform. Eval. Rev. 40, 1 (Jun. 2012), 211--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Jian Ni, Haiyong Xie, Sekhar Tatikonda, and Yang Richard Yang. 2010. Efficient and dynamic routing topology inference from end-to-end measurements. IEEE/ACM Trans. Network. 18, 1 (Feb. 2010), 123--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. M. Paluš, D. Hartman, J. Hlinka, and M. Vejmelka. 2011. Discerning connectivity from dynamics in climate networks. Nonlin. Process. Geophys. 18, 5 (2011), 751--763.Google ScholarGoogle ScholarCross RefCross Ref
  135. Evangelos E. Papalexakis, Alona Fyshe, Nicholas D. Sidiropoulos, Partha Pratim Talukdar, Tom M. Mitchell, and Christos Faloutsos. 2014. Good-enough brain model: Challenges, algorithms and discoveries in multi-subject experiments. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). ACM, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. D. M. Patrick, M. L. Rekart, A. Jolly, S. Mak, M. Tyndall, J. Maginley, E. Wong, T. Wong, H. Jones, C. Montgomery, and R. C. Brunham. 2002. Heterosexual outbreak of infectious syphilis: Epidemiological and ethnographic analysis and implications for control. Sex. Transmit. Infect. 78, suppl 1 (2002), i164--i169.Google ScholarGoogle ScholarCross RefCross Ref
  137. Joseph J. Pfeiffer III, Sebastian Moreno, Timothy La Fond, Jennifer Neville, and Brian Gallagher. 2014. Attributed graph models: Modeling network structure with correlated attributes. In Proceedings of the 23rd International Conference on World Wide Web (WWW’14). ACM, 831--842. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Gert Pfurtscheller and Colin Andrew. 1999. Event-related changes of band power and coherence: Methodology and interpretation. J. Clin. Neurophysiol. 16, 6 (Nov. 1999), 512--519.Google ScholarGoogle ScholarCross RefCross Ref
  139. Noa Pinter-Wollman, Elizabeth A. Hobson, Jennifer E. Smith, Andrew J. Edelman, Daizaburo Shizuka, Shermin de Silva, James S. Waters, Steven D. Prager, Takao Sasaki, George Wittemyer, Jennifer Fewell, and David B. McDonald. 2013. The dynamics of animal social networks: Analytical, conceptual, and theoretical advances. Behavioral Ecology. Oxford University Press.Google ScholarGoogle Scholar
  140. S. C. Ponten, F. Bartolomei, and C. J. Stam. 2016. Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin. Neurophysiol. 118, 4 (Apr. 2016), 918--927.Google ScholarGoogle Scholar
  141. Stephen R. Proulx, Daniel E. L. Promislow, and Patrick C. Phillips. 2005. Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 6 (2005), 345--353.Google ScholarGoogle ScholarCross RefCross Ref
  142. Nataša Pržulj, Derek G. Corneil, and Igor Jurisica. 2004. Modeling interactome: Scale-free or geometric? Bioinformatics 20, 18 (2004), 3508--3515. Google ScholarGoogle ScholarCross RefCross Ref
  143. Ioannis Psorakis, Stephen J. Roberts, Iead Rezek, and Ben C. Sheldon. 2012. Inferring social network structure in ecological systems from spatio-temporal data streams. J. Roy. Soc. Interface 9, 76 (2012), 3055--3066.Google ScholarGoogle ScholarCross RefCross Ref
  144. Manish Purohit, B. Aditya Prakash, Chanhyun Kang, Yao Zhang, and V. S. Subrahmanian. 2014. Fast influence-based coarsening for large networks. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). ACM, 1296--1305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. J. D. Ramsey, S. J. Hanson, C. Hanson, Y. O. Halchenko, R. A. Poldrack, and C. Glymour. 2010. Six problems for causal inference from fMRI. NeuroImage 49, 2 (2010), 1545--1558.Google ScholarGoogle ScholarCross RefCross Ref
  146. Carlo Ratti, Stanislav Sobolevsky, Francesco Calabrese, Clio Andris, Jonathan Reades, Mauro Martino, Rob Claxton, and Steven H. Strogatz. 2010. Redrawing the map of great britain from a network of human interactions. PLoS ONE 5, 12 (Dec. 2010), e14248.Google ScholarGoogle ScholarCross RefCross Ref
  147. Jaap C. Reijneveld, Sophie C. Ponten, Henk W. Berendse, and Cornelis J. Stam. 2007. The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 11 (Dec. 2007), 2317--2331.Google ScholarGoogle ScholarCross RefCross Ref
  148. Bruno Ribeiro, Nicola Perra, and Andrea Baronchelli. 2013. Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3 (Oct. 2013), 3006.Google ScholarGoogle Scholar
  149. Lucy F. Robinson, Lauren Y. Atlas, and Tor D. Wager. 2015. Dynamic functional connectivity using state-based dynamic community structure: Method and application to opioid analgesia. NeuroImage 108 (2015), 274--291.Google ScholarGoogle ScholarCross RefCross Ref
  150. Alard Roebroeck, Elia Formisano, and Rainer Goebel. 2005. Mapping directed influence over the brain using granger causality and fMRI. NeuroImage 25, 1 (2005), 230--242.Google ScholarGoogle ScholarCross RefCross Ref
  151. M. J. Rosa, K. Friston, and W. Penny. 2012. Post-hoc selection of dynamic causal models. J. Neurosci. Methods 208, 1 (2012), 66--78.Google ScholarGoogle ScholarCross RefCross Ref
  152. Mikail Rubinov and Olaf Sporns. 2010. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52, 3 (Sept. 2010), 1059--1069.Google ScholarGoogle ScholarCross RefCross Ref
  153. Jakob Runge, Vladimir Petoukhov, and Jürgen Kurths. 2013. Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models. J. Climate 27, 2 (Sept. 2013), 720--739.Google ScholarGoogle Scholar
  154. Christian Rutz, Zackory T. Burns, Richard James, Stefanie M. H. Ismar, John Burt, Brian Otis, Jayson Bowen, and James J. H. St Clair. 2012. Automated mapping of social networks in wild birds. Curr. Biol. 22, 17 (2012), R669--R671.Google ScholarGoogle ScholarCross RefCross Ref
  155. Suranjana Saha, Shrinivas Moorthi, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, David Behringer, Yu-Tai Hou, Hui-ya Chuang, Mark Iredell, Michael Ek, Jesse Meng, Rongqian Yang, Malaquías Peña Mendez, Huug van den Dool, Qin Zhang, Wanqiu Wang, Mingyue Chen, and Emily Becker. 2014. The NCEP climate forecast system version 2. J. Climate 27, 6 (2014), 2185--2208.Google ScholarGoogle ScholarCross RefCross Ref
  156. Vangelis Sakkalis. 2011. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comp. Biol. Med. 41, 12 (2011), 1110--1117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Jari Saramäki and Esteban Moro. 2015. From seconds to months: An overview of multi-scale dynamics of mobile telephone calls. Eur. Phys. J. B. 88, 6 (2015), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  158. Vedran Sekara and Sune Lehmann. 2014. The strength of friendship ties in proximity sensor data. PLoS ONE 9, 7 (July 2014), e100915.Google ScholarGoogle ScholarCross RefCross Ref
  159. Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008. Collective classification in network data. AI Mag. 29, 3 (2008), 93. http://hdl.handle.net/1903/7546Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. Jay Shendure and Hanlee Ji. 2008. Next-generation DNA sequencing. Nature Biotechnol. 26, 10 (Oct. 2008), 1135--1145.Google ScholarGoogle ScholarCross RefCross Ref
  161. Caroline Siegenthaler and Rudiyanto Gunawan. 2014. Assessment of network inference methods: How to cope with an underdetermined problem. PLoS ONE 9, 3 (03 2014), 1--7.Google ScholarGoogle Scholar
  162. Chao Sima, Jianping Hua, and Sungwon Jung. 2009. Inference of gene regulatory networks using time-series data: A survey. Curr. Genom. 10, 6 (Sept. 2009), 416--429.Google ScholarGoogle ScholarCross RefCross Ref
  163. Sean L. Simpson, F. DuBois Bowman, and Paul J. Laurienti. 2013. Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain. Stat. Surveys 7 (2013), 1--36.Google ScholarGoogle ScholarCross RefCross Ref
  164. Timo Smieszek, Stefanie Castell, Alain Barrat, Ciro Cattuto, Peter J. White, and Gérard Krause. 2016. Contact diaries versus wearable proximity sensors in measuring contact patterns at a conference: Method comparison and participants’ attitudes. BMC Infect. Dis. 16, 1 (2016), 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  165. Orr Spiegel, Stephan T. Leu, Andrew Sih, and C. Michael Bull. 2016. Socially interacting or indifferent neighbours? Randomization of movement paths to tease apart social preference and spatial constraints. Methods Ecol. Evol. 7, 8 (2016), 971--979.Google ScholarGoogle ScholarCross RefCross Ref
  166. Olaf Sporns. 2014. Contributions and challenges for network models in cognitive neuroscience. Nature Neurosci. 17, 5 (May 2014), 652--660.Google ScholarGoogle ScholarCross RefCross Ref
  167. Olaf Sporns and Richard F. Betzel. 2016. Modular brain networks. Annu. Rev. Psychol. 67, 1 (Jan. 2016), 613--640.Google ScholarGoogle ScholarCross RefCross Ref
  168. J. Conrad Stack, Shweta Bansal, V. S. Anil Kumar, and Bryan Grenfell. 2013. Inferring population-level contact heterogeneity from common epidemic data. J. Roy. Soc. Interface 10, 78 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  169. Juliette Stehlé, François Charbonnier, Tristan Picard, Ciro Cattuto, and Alain Barrat. 2013. Gender homophily from spatial behavior in a primary school: A sociometric study. Social Networks 35, 4 (2013), 604--613.Google ScholarGoogle ScholarCross RefCross Ref
  170. Karsten Steinhaeuser, Nitesh V. Chawla, and Auroop R. Ganguly. 2011. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat. Anal. Data Min. 4, 5 (2011), 497--511. Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. Arkadiusz Stopczynski, Riccardo Pietri, Alex Pentland, David Lazer, and Sune Lehmann. 2014. Privacy in sensor-driven human data collection: A guide for practitioners. ArXiv e-prints (Mar. 2014). https://arxiv.org/abs/1403.5299Google ScholarGoogle Scholar
  172. Arkadiusz Stopczynski, Vedran Sekara, Piotr Sapiezynski, Andrea Cuttone, Mette My Madsen, Jakob Eg Larsen, and Sune Lehmann. 2014. Measuring large-scale social networks with high resolution. PLoS ONE 9, 4 (Apr. 2014), e95978.Google ScholarGoogle ScholarCross RefCross Ref
  173. Cédric Sueur, Armand Jacobs, Frédéric Amblard, Odile Petit, and Andrew J. King. 2011. How can social network analysis improve the study of primate behavior? Amer. J. Primatol. 73, 8 (Aug. 2011), 703--19.Google ScholarGoogle ScholarCross RefCross Ref
  174. Rajmonda Sulo, Tanya Berger-Wolf, and Robert Grossman. 2010. Meaningful selection of temporal resolution for dynamic networks. In Proceedings of the 8th Workshop on Mining and Learning with Graphs (MLG’10). ACM, New York, NY, 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Kaustubh Supekar, Vinod Menon, Daniel Rubin, Mark Musen, and Michael D. Greicius. 2008. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4, 6 (2008), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  176. Kaustubh Supekar, Vinod Menon, Daniel Rubin, Mark Musen, and Michael D. Greicius. 2008. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4, 6 (Jun. 2008), e1000100.Google ScholarGoogle ScholarCross RefCross Ref
  177. Yuriy Sverchkov and Mark Craven. 2017. A review of active learning approaches to experimental design for uncovering biological networks. PLOS Comput. Biol. 13, 6 (2017), 1--26.Google ScholarGoogle ScholarCross RefCross Ref
  178. Hiroyuki Toh and Katsuhisa Horimoto. 2002. Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 18, 2 (2002), 287--297.Google ScholarGoogle ScholarCross RefCross Ref
  179. Anastasios A. Tsonis and Paul J. Roebber. 2004. The architecture of the climate network. Physica A: Stat. Mech. Appl. 333, 0 (2004), 497--504.Google ScholarGoogle ScholarCross RefCross Ref
  180. Anastasios A. Tsonis, Geli Wang, Kyle L. Swanson, Francisco A. Rodrigues, and Luciano da Fontura Costa. 2011. Community structure and dynamics in climate networks. Climate Dynam. 37, 5--6 (2011), 933--940.Google ScholarGoogle ScholarCross RefCross Ref
  181. Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos Faloutsos. 2009. DOULION: Counting triangles in massive graphs with a coin. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM, 837--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. Liubov Tupikina, Nora Molkenthin, Cristóbal López, Emilio Hernández-García, Norbert Marwan, and Jürgen Kurths. 2016. Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics. PLoS ONE 11, 4 (04 2016), 1--12.Google ScholarGoogle Scholar
  183. Toni Vallès-Català, Tiago P. Peixoto, Roger Guimerà, and Marta Sales-Pardo. 2017. On the consistency between model selection and link prediction in networks. ArXiv e-prints (May 2017). https://arxiv.org/abs/1705.07967Google ScholarGoogle Scholar
  184. Martijn P. van den Heuvel, René S. Kahn, Joaquín Goñi, and Olaf Sporns. 2012. High-cost, high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci. U.S.A. 109, 28 (July 2012), 11372--11377.Google ScholarGoogle ScholarCross RefCross Ref
  185. Martijn P. van den Heuvel and Olaf Sporns. 2011. Rich-club organization of the human connectome. J. Neurosci. 31, 44 (Nov. 2011), 15775--15786.Google ScholarGoogle ScholarCross RefCross Ref
  186. Martijn P. van den Heuvel and Olaf Sporns. 2015. Network hubs in the human brain. Trends Cogn. Sci. 17, 12 (Dec. 2015), 683--696.Google ScholarGoogle Scholar
  187. Dan J. Wang, Xiaolin Shi, Daniel A. McFarland, and Jure Leskovec. 2012. Measurement error in network data: A re-classification. Soc. Networks 34, 4 (2012), 396--409.Google ScholarGoogle ScholarCross RefCross Ref
  188. Larry Wasserman. 2006. All of Nonparametric Statistics (Springer Texts in Statistics). Springer, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of “small-world” networks. Nature 393, 6684 (Jun. 1998), 440--442.Google ScholarGoogle ScholarCross RefCross Ref
  190. David Welch, Shweta Bansal, and David R. Hunter. 2011. Statistical inference to advance network models in epidemiology. Epidemics 3, 1 (Mar. 2011), 38--45.Google ScholarGoogle ScholarCross RefCross Ref
  191. Tina Wey, Daniel T. Blumstein, Weiwei Shen, and Ferenc Jordán. 2008. Social network analysis of animal behaviour: A promising tool for the study of sociality. Animal Behav. 75, 2 (2008), 333--344.Google ScholarGoogle ScholarCross RefCross Ref
  192. Hal Whitehead, Lars Bejder, and C. Andrea Ottensmeyer. 2005. Testing association patterns: Issues arising and extensions. Animal Behav. 69, 5 (2005).Google ScholarGoogle Scholar
  193. Hal Whitehead and Richard James. 2015. Generalized affiliation indices extract affiliations from social network data. Methods Ecol. Evol. 6, 7 (2015), 836--844.Google ScholarGoogle ScholarCross RefCross Ref
  194. R. W. Wilkins, D. A. Hodges, P. J. Laurienti, M. Steen, and J. H. Burdette. 2014. Network science and the effects of music preference on functional brain connectivity: From beethoven to eminem. Sci. Rep. 4 (Aug. 2014), 6130.Google ScholarGoogle Scholar
  195. Rongjing Xiang and Jennifer Neville. 2008. Pseudolikelihood EM for within-network relational learning. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). 1103--1108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. K. Yamasaki, A. Gozolchiani, and S. Havlin. 2008. Climate networks around the globe are significantly affected by El Niño. Phys. Rev. Lett. 100, 22 (Jun. 2008), 228501.Google ScholarGoogle ScholarCross RefCross Ref
  197. Donghyeon Yu, MinSoo Kim, Guanghua Xiao, and Tae Hyun Hwang. 2013. Review of biological network data and its applications. Genom. Informat. 11, 4 (Dec. 2013), 200--210.Google ScholarGoogle Scholar
  198. Qingbao Yu, Erik B. Erhardt, Jing Sui, Yuhui Du, Hao He, Devon Hjelm, Mustafa S. Cetin, Srinivas Rachakonda, Robyn L. Miller, Godfrey Pearlson, and Vince D. Calhoun. 2015. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: Application to healthy controls and patients with schizophrenia. NeuroImage 107 (2015), 345--355.Google ScholarGoogle ScholarCross RefCross Ref
  199. Ming Yuan and Yi Lin. 2006. Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc: Series B (Stat. Methodol.) 68, 1 (Feb. 2006), 49--67.Google ScholarGoogle ScholarCross RefCross Ref
  200. Andrew Zalesky, Alex Fornito, and Ed Bullmore. 2012. On the use of correlation as a measure of network connectivity. NeuroImage 60, 4 (2012), 2096--2106.Google ScholarGoogle ScholarCross RefCross Ref
  201. Andrew Zalesky, Alex Fornito, Ian H. Harding, Luca Cocchi, Murat Yücel, Christos Pantelis, and Edward T. Bullmore. 2010. Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage 50, 3 (Apr. 2010), 970--983.Google ScholarGoogle ScholarCross RefCross Ref
  202. Tanja Zerenner, Petra Friederichs, Klaus Lehnertz, and Andreas Hense. 2014. A gaussian graphical model approach to climate networks. Chaos 24, 2 (2014).Google ScholarGoogle Scholar
  203. Yang Zhan, David Halliday, Ping Jiang, Xuguang Liu, and Jianfeng Feng. 2006. Detecting time-dependent coherence between non-stationary electrophysiological signals--A combined statistical and time-frequency approach. J. Neurosci. Methods 156, 1--2 (Sept. 2006), 322--332.Google ScholarGoogle ScholarCross RefCross Ref
  204. Bin Zhang and Steve Horvath. 2005. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 1 (2005).Google ScholarGoogle Scholar
  205. Dong Zhou, Avi Gozolchiani, Yosef Ashkenazy, and Shlomo Havlin. 2015. Teleconnection paths via climate network direct link detection. Phys. Rev. Lett. 115, 26 (Dec. 2015), 268501.Google ScholarGoogle ScholarCross RefCross Ref
  206. Hui Zhou, Wencai Du, Shaochun Xu, and Qinling Xin. 2011. An empirical study of network topology inference. In Computer and Information Science 2011 SE-17, Roger Lee (Ed.). Studies in Computational Intelligence, Vol. 364. Springer, Berlin, 213--225.Google ScholarGoogle Scholar

Index Terms

  1. Network Structure Inference, A Survey: Motivations, Methods, and Applications

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Computing Surveys
                ACM Computing Surveys  Volume 51, Issue 2
                March 2019
                748 pages
                ISSN:0360-0300
                EISSN:1557-7341
                DOI:10.1145/3186333
                • Editor:
                • Sartaj Sahni
                Issue’s Table of Contents

                Copyright © 2018 ACM

                © 2018 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 17 April 2018
                • Accepted: 1 October 2017
                • Revised: 1 August 2017
                • Received: 1 October 2016
                Published in csur Volume 51, Issue 2

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • survey
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader