skip to main content
research-article
Public Access

What Are Optimal Coding Functions for Time-of-Flight Imaging?

Published:28 February 2018Publication History
Skip Abstract Section

Abstract

The depth resolution achieved by a continuous wave time-of-flight (C-ToF) imaging system is determined by the coding (modulation and demodulation) functions that it uses. Almost all current C-ToF systems use sinusoid or square coding functions, resulting in a limited depth resolution. In this article, we present a mathematical framework for exploring and characterizing the space of C-ToF coding functions in a geometrically intuitive space. Using this framework, we design families of novel coding functions that are based on Hamiltonian cycles on hypercube graphs. Given a fixed total source power and acquisition time, the new Hamiltonian coding scheme can achieve up to an order of magnitude higher resolution as compared to the current state-of-the-art methods, especially in low signal-to-noise ratio (SNR) settings. We also develop a comprehensive physically-motivated simulator for C-ToF cameras that can be used to evaluate various coding schemes prior to a real hardware implementation. Since most off-the-shelf C-ToF sensors use sinusoid or square functions, we develop a hardware prototype that can implement a wide range of coding functions. Using this prototype and our software simulator, we demonstrate the performance advantages of the proposed Hamiltonian coding functions in a wide range of imaging settings.

Skip Supplemental Material Section

Supplemental Material

tog37-2-a13-gupta.mp4

mp4

188.4 MB

References

  1. Amit Adam, Christoph Dann, Omer Yair, Shai Mazor, and Sebastian Nowozin. 2016. Bayesian time-of-flight for realtime shape, illumination and Albedo. IEEE PAMI 38, 5 (2016), 851--864. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B. Buxbaum, R. Schwarte, T. Ringbeck, M. Grothof, and X. Luan. 2002. MSM-PMD as correlation receiver in a new 3D-ranging system. Proc. SPIE 4546 (2002).Google ScholarGoogle Scholar
  3. D. A. Carnegie, J. R. K. McClymont, A. P. P. Jongenelen, A. A. Dorrington B. Drayto and, and A. D. Payne. 2011. Design and construction of a configurable full-field range imaging system for mobile robotic applications. Lecture Notes in Electrical Engineering 83 (2011).Google ScholarGoogle Scholar
  4. David Droeschel, Dirk Holz, and Sven Behnke. 2010. Multi-frequency phase unwrapping for time-of-flight cameras. In Proc. IROS.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. Ferriere, J. Cussey, and J. Dudley. 2008. Time-of-flight range detection using low frequency intensity modulation of a CW laser diode: Application to fiber length measurement. Optical Engineering 47, 9 (2008), 93602--1 to 93602--6.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Freedman, E. Krupka, Y. Smolin, I. Leichter, and M. Schmidt. 2014. SRA: Fast removal of general multipath for ToF sensors. In Proc. ECCV.Google ScholarGoogle Scholar
  7. J. P. Godbaz, A. A. Dorrington, and M. J. Cree. 2013. Understanding and ameliorating mixed pixels and multipath interference in AMCW lidar. In TOF Range-Imaging Cameras, Fabio Remondino and D. Stoppa (Eds.). Springer Berlin.Google ScholarGoogle Scholar
  8. B. S. Goldstein and G. F. Dalrymple. 1967. Gallium arsenide injection laser radar. Proc. of the IEEE 55, 2 (1967).Google ScholarGoogle ScholarCross RefCross Ref
  9. C. Gotsman and M. Lindenbaum. 1996. On the metric properties of discrete space-filling curves. IEEE TIP 5, 5 (1996), 794--797. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Frank Gray. 1953. Pulse code communication. US Patent 2,632,058 (1953).Google ScholarGoogle Scholar
  11. R. Grootjans, W. Van der Tempel, D. Van Nieuwenhovec, C. de Tandt, and M. Kuijk. 2006. Improved modulation techniques for time-of-flight ranging cameras using pseudo random binary sequences. In Proc. IEEE LEOS Benelux Chapter.Google ScholarGoogle Scholar
  12. M. Gupta, S. K. Nayar, M. Hullin, and J. Martin. 2015. Phasor imaging: A generalization of correlation-based time-of-flight imaging. ACM Trans. Graphics 34, 5 (2015), 156:1--156:18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. W. Hasinoff, F. Durand, and W. T. Freeman. 2010. Noise-optimal capture for high dynamic range photography. In Proc. IEEE CVPR.Google ScholarGoogle Scholar
  14. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich. 2013. Low-budget transient imaging using photonic mixer devices. ACM SIGGRAPH 32, 4 (2013), 45:1--45:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Horn and N. Kiryati. 1997. Toward optimal structured light patterns. In International Conference on Recent Advances in 3D Digital Imaging and Modeling. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Inokuchi, K. Sato, and F. Matsuda. 1984. Range imaging system for 3-D object recognition. In Proc. IEEE ICPR.Google ScholarGoogle Scholar
  17. A. P. P. Jongenelen, D. G. Bailey, A. D. Payne, A. A. Dorrington, and D. A. Carnegie. 2011. Analysis of errors in ToF range imaging with dual-frequency modulation. IEEE Transactions on Instrumentation and Measurement 60, 5 (2011), 1861--1868.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar. 2013. Coded ToF cameras: Sparse deconvolution to address multipath interference and recover time profiles. ACM SIGGRAPH Asia 32, 6 (2013), 167:1--167:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Kawakita, K. Iizuka, R. Iwama, K. Takizawa, H. Kikuchi, and F. Sato. 2004. Gain-modulated Axi-vision camera. Opt. Express 12, 22 (2004), 5336--5344.Google ScholarGoogle Scholar
  20. Maik Keller and Andreas Kolb. 2009. Real-time simulation of time-of-flight sensors. Simulation Modelling Practice and Theory 17, 5 (2009), 967--978.Google ScholarGoogle Scholar
  21. W. Koechner. 1968. Optical ranging system employing a high power injection laser diode. IEEE Trans. AES 4, 1 (1968), 81--91.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Kolb, E. Barth, R. Koch, and R. Larsen. 2010. Time-of-flight cameras in computer graphics. Eurographics (2010).Google ScholarGoogle Scholar
  23. R. Lange. 2000. 3D ToF distance measurement with custom solid-state image sensors in CMOS-CCD-technology. Ph.D. Thesis (2000).Google ScholarGoogle Scholar
  24. R. Lange and P. Seitz. 2001. Solid state time-of-flight range camera. IEEE J. Quantum Electronics 37, 3 (2001), 390--397.Google ScholarGoogle ScholarCross RefCross Ref
  25. Robert Lange, Peter Seitz, Alice Biber, and Stefan C. Lauxtermann. 2000. Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging. Proc. SPIE 3965 (2000).Google ScholarGoogle Scholar
  26. Stephan Meister, Rahul Nair, and Daniel Kondermann. 2013. Simulation of time-of-flight sensors using global illumination. In Vision, Modeling and Visualization, Michael Bronstein, Jean Favre, and Kai Hormann (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  27. Microsoft-Kinect. 2014. March NPD Results: Titanfall on Xbox One is Number One Selling Game. Retrieved from http://news.xbox.com/2014/04/xbox-one-march-npd.Google ScholarGoogle Scholar
  28. W. H. Mills. 1963. Some complete cycles on the n-cube. Proc. Amer. Math. Soc. 14, 4 (1963), 640--643.Google ScholarGoogle Scholar
  29. M. O’Toole, S. Achar, S. G. Narasimhan, and K. N. Kutulakos. 2015. Homogeneous codes for energy-efficient illumination and imaging. ACM SIGGRAPH 34, 4 (2015), 35:1--35:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos. 2014. Temporal frequency probing for 5D transient analysis of global light transport. ACM SIGGRAPH 33, 4 (2014), 87:1--87:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. D. Payne, A. A. Dorrington, and M. J. Cree. 2010. Illumination waveform optimization for time-of-flight range imaging cameras. In Proc. SPIE 8085.Google ScholarGoogle Scholar
  32. J. M. Payne. 1973. An optical distance measuring instrument. Review of Scientific Instruments 44, 3 (1973).Google ScholarGoogle Scholar
  33. H. Sagan. 1994. Space Filling Curves. Springer, New York.Google ScholarGoogle Scholar
  34. Mirko Schmidt and Bernd Jähne. 2009. A Physical Model of Time-of-Flight 3D Imaging Systems, Including Suppression of Ambient Light. Springer Berlin, Berlin, Germany, 1--15.Google ScholarGoogle Scholar
  35. R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte. 1997. New electro-optical mixing and correlating sensor: Facilities and applications of the photonic mixer device. In Proc. SPIE (3100).Google ScholarGoogle Scholar
  36. O. Shcherbakova, L. Pancheri, G.-F. Dalla Betta, N. Massari, and D. Stoppa. 2013. 3D camera based on linear-mode gain-modulated photodiodes. In Proc. IEEE ISSCC.Google ScholarGoogle Scholar
  37. Shikhar Shrestha, Felix Heide, Wolfgang Heidrich, and Gordon Wetzstein. 2016. Computational imaging with multi-camera time-of-flight systems. ACM SIGGRAPH 35, 4 (2016), 33:1--33:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. E. Tadmor, I. Bakish, S. Felzenshtein, E. Larry, G. Yahav, and D. Cohen. 2014. A fast global shutter image sensor based on the VOD mechanism. In IEEE SENSORS. 618--621.Google ScholarGoogle Scholar
  39. Texas-Instruments. 2017. OPT8241 3D Time-of-Flight Sensor. Retrieved from http://www.ti.com/lit/ds/sbas704b/sbas704b.pdf.Google ScholarGoogle Scholar
  40. A. Torralba and A. Oliva. 2003. Statistics of natural image categories. Network 14, 3 (2003), 391--412.Google ScholarGoogle ScholarCross RefCross Ref
  41. John F. Wakerly. 2005. Digital Design: Principles and Practices. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. What Are Optimal Coding Functions for Time-of-Flight Imaging?

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 37, Issue 2
        April 2018
        244 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3191713
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 February 2018
        • Revised: 1 October 2017
        • Accepted: 1 October 2017
        • Received: 1 June 2017
        Published in tog Volume 37, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader