skip to main content
survey

Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

Published:26 September 2017Publication History
Skip Abstract Section

Abstract

Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article’s contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area.

References

  1. S. Ali and M. Shah. 2008. Floor fields for tracking in high density crowd scenes. In Proceedings of the 10th European Conference on Computer Vision (ECCV’08). 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Y. Aloimonos, A. Bandyopadhyay, and I. Weiss. 1988. Active vision. International Journal of Computer Vision 1, 4, 333--356. Google ScholarGoogle ScholarCross RefCross Ref
  3. G. Antonini. 2006. A Discrete Choice Modeling Framework for Pedestrian Walking Behavior With Application to Human Tracking in Video Sequences. Ph.D. Dissertation. École Polytechnique Fédérale de Lausanne.Google ScholarGoogle Scholar
  4. G. Antonini, M. Bierlaire, and M. Weber. 2006. Discrete choice models of pedestrian walking behavior. Transport Research Part B: Methodological 40, 8, 667--687. Google ScholarGoogle ScholarCross RefCross Ref
  5. G. Arechavaleta, J. P. Laumond, H. Hicheur, and A. Berthoz. 2008. An optimality principle governing human walking. IEEE Transactions on Robotics 24, 1, 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Arita and A. Schadschneider. 2014. The dynamics of waiting: The exclusive queueing process. Transportation Research Procedia 2, 87--95. Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Asano, A. Sumalee, M. Kuwahara, and S. Tanaka. 2007. Dynamic cell transmission-based pedestrian model with multidirectional flows and strategic route choices. Transportation Research Record: Journal of the Transportation Research Board 2039, 42--49. Google ScholarGoogle ScholarCross RefCross Ref
  8. F. Bai and A. Helmy. 2006. A Survey of Mobility Modeling and Analysis in Wireless Adhoc Networks. Springer.Google ScholarGoogle Scholar
  9. S. Bandini, M. Mondini, and G. Vizzari. 2014. Modelling negative interactions among pedestrians in high density situations. Transportation Research Part C: Emerging Technologies 40, 251--270. Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Batty. 2003. Agent-based pedestrian modelling. In Advanced Spatial Analysis: The CASA Book of GIS. Esri Press, Redlands, CA, 81--108.Google ScholarGoogle Scholar
  11. M. Batty, J. Desyllas, and E. Duxbury. 2003. The discrete dynamics of small-scale spatial events: Agent-based models of mobility in carnivals and street parades. International Journal of Geographical Information Science 17, 7, 673--697. Google ScholarGoogle ScholarCross RefCross Ref
  12. N. Bellomo, A. Bellouquid, and D. Knopoff. 2013. From the microscale to collective crowd dynamics. Multiscale Modeling and Simulation 11, 3, 943--963. Google ScholarGoogle ScholarCross RefCross Ref
  13. N. Bellomo, S. Berrone, L. Gibelli, and A. Pieri. 2015. First order models of human crowds with behavioral-social dynamics. arXiv:1501.02828.Google ScholarGoogle Scholar
  14. N. Bellomo and C. Dogbe. 2011. On the modeling of traffic and crowds: A survey of models, speculations and perspectives. SIAM Review 53, 3, 409--463. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Bellomo, B. Piccoli, and A. Tosin. 2012. Modeling crowd dynamics from a complex system viewpoint. Mathematical Models and Methods in Applied Sciences 22, 1230004. Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Ben-Akiva and S. R. Lerman. 1985. Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  17. A. Bera, S. Kim, and D. Manocha. 2016. Online parameter learning for data-driven crowd simulation and content generation. Computers and Graphics 55, 68--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Bierlaire. 2003. BIOGEME: A free package for the estimation of discrete choice models. In Proceedings of the 3rd Swiss Transportation Research Conference.Google ScholarGoogle Scholar
  19. M. Bierlaire, G. Antonioni, and M. Weber. 2003. Behavioral dynamics for pedestrians. In Moving Through Nets: The Physical and Social Dimensions of Travel. Elsevier, Amsterdam, Netherlands, 323--336.Google ScholarGoogle Scholar
  20. M. Bierlaire and T. Robin. 2009. Pedestrian behavior. In Pedestrians Choices. Emerald, Bingley, West Yorkshire, England, 1--25.Google ScholarGoogle Scholar
  21. V. J. Blue and J. L. Adler. 1998. Emergent fundamental pedestrian flows from cellular automata microsimulation. Transport Research Record 1644, 29--36. Google ScholarGoogle ScholarCross RefCross Ref
  22. V. J. Blue and J. L. Adler. 2001. Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research Part B: Methodological 35, 3, 293--312. Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Boldrini and A. Passarella. 2010. HCMM: Modelling spatial and temporal properties of human mobility driven by users’ social relationships. Computer Communications 33, 9, 1056--1074. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Borgers and H. Timmermans. 1986. A model for pedestrian route choice and demand for retail facilities within inner-city shopping areas. Geographical Analysis 18, 115--128. Google ScholarGoogle ScholarCross RefCross Ref
  25. V. Borrel, F. Legendre, M. Dias de Amorim, and S. Fdida. 2009. SIMPS: Using sociology for personal mobility. IEEE/ACM Transactions on Networking 17, 3, 831--842. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Bruneau and J. Pettré. 2015. Energy-efficient mid-term strategies for collision avoidance in crowd simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 119--127.Google ScholarGoogle Scholar
  27. C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz. 2001. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507--525. Google ScholarGoogle ScholarCross RefCross Ref
  28. Tracy Camp, Jeff Boleng, and Vanessa Davies. 2002. A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing 2, 5, 483--502. Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Campanella, S. Hoogendoorn, and W. Daamen. 2014. Quantitative and qualitative validation procedure for general use of pedestrian models. In Pedestrian and Evacuation Dynamics 2012. Springer, 891--905. Google ScholarGoogle ScholarCross RefCross Ref
  30. E. Canetti. 1962. Crowds and Power. Gollancz, London, England.Google ScholarGoogle Scholar
  31. L. Casadiego and N. Pelechano. 2015. From one to many: Simulating groups of agents with reinforcement learning controllers. In Intelligent Virtual Agents. Lecture Notes in Computer Science, Vol. 9238. Springer, 119--123. Google ScholarGoogle ScholarCross RefCross Ref
  32. U. Chattaraj, A. Seyfried, P. Chakroborty, and M. K. Biswal. 2013. Modelling single file pedestrian motion across cultures. Procedia: Social and Behavioral Sciences 104, 0, 698--707. Google ScholarGoogle ScholarCross RefCross Ref
  33. S. Chenney. 2004. Flow tiles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. Y. Cheung and W. H. K. Lam. 1998. Pedestrian route choices between escalator and stairway in MTR stations. Journal of Transportation Engineering 124, 277--285. Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Chraibi, U. Kemloh, A. Schadschneider, and A. Seyfried. 2011. Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6, 3, 424--442.Google ScholarGoogle ScholarCross RefCross Ref
  36. M. Chraibi, A. Seyfried, and A. Schadschneider. 2010. Generalized centrifugal-force model for pedestrian dynamics. Physical Review E 82, 4, 046111. M. Chraibi, A. Seyfried, A. Schadschneider, and W. Mackens. 2009. Quantitative description of pedestrian dynamics with force-based model. In Proceedings of the IEEE International Conference on Web Intelligence and Intelligent Agent Technology. Google ScholarGoogle ScholarCross RefCross Ref
  37. M. Chraibi, A. Tordeuxand, and A. Schadschneider. 2015. A force-based modelto reproduce stop-and-go waves in pedestrian dynamics. arXiv:1512.01166.Google ScholarGoogle Scholar
  38. R. M. Colombo and M. D. Rosini. 2005. Pedestrian flows and non-classical shocks. Mathematical Methods in the Applied Sciences 28, 13, 1553--1567. Google ScholarGoogle ScholarCross RefCross Ref
  39. V. Coscia and C. Canavesio. 2008. First-order macroscopic modelling of human crowd dynamics. Mathematical Models and Methods in Applied Sciences 18, Suppl. 1, 1217--1247. Google ScholarGoogle ScholarCross RefCross Ref
  40. E. Cristiani, B. Piccoli, and A. Tosin. 2011. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Modeling and Simulation 9, 1, 155--182. Google ScholarGoogle ScholarCross RefCross Ref
  41. E. Cristiani, F. S. Priuli, and A. Tosin. 2015. Modeling rationality to control self-organization of crowds: An environmental approach. SIAM Journal on Applied Mathematics 75, 2, 605--629. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Curtis, A. Best, and D. Manocha. 2016. Menge: A modular framework for simulating crowd movement. Collective Dynamics 1, 0, 1--40.Google ScholarGoogle ScholarCross RefCross Ref
  43. S. Curtis and D. Manocha. 2014. Pedestrian simulation using geometric reasoning in velocity space. In Pedestrian and Evacuation Dynamics 2012, U. Weidmann, U. Kirsch, and M. Schreckenberg (Eds.). Springer, 875--890. Google ScholarGoogle ScholarCross RefCross Ref
  44. W. Daamen. 2004. Modelling Passenger Flows in Public Transport Facilities. Ph.D. Dissertation. Delft University of Technology, Netherlands.Google ScholarGoogle Scholar
  45. W. Daamen, M. Campanella, and S. P. Hoogendoorn. 2013. Calibration of nomad parameters using empirical data. In Traffic and Granular Flow’11. Springer, 109--120. Google ScholarGoogle ScholarCross RefCross Ref
  46. W. Daamen, D. C. Duives, S. P. Hoogendoorn, S. Seer, C. Rudloff, T. Matyus, and N. Brändle. 2014. Validating social force based models with comprehensive real world motion data. Transportation Research Procedia 2, 724--732.Google ScholarGoogle ScholarCross RefCross Ref
  47. W. Daamen, S. Hoogerndoorn, and P. Bovy. 2005. First-order pedestrian traffic flow theory. Transport Research Record 1934, 43--52. Google ScholarGoogle ScholarCross RefCross Ref
  48. C. Daganzo. 1994. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological 28, 4, 269--287. Google ScholarGoogle ScholarCross RefCross Ref
  49. M. di Francesco, P. A. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. 2011. On the Hughes’ model for pedestrian flow: The one-dimensional case. Journal of Differential Equations 250, 3, 1334--1362. Google ScholarGoogle ScholarCross RefCross Ref
  50. F. Dietrich and G. Köster. 2014. Gradient navigation model for pedestrian dynamics. Physical Review E 89, 062801.Google ScholarGoogle ScholarCross RefCross Ref
  51. J. Dijkstra, H. J. P. Timmermans, and A. J. Jessurun. 2001. A multi-agent cellular automata system for visualising simulated pedestrian activity. In Theory and Practical Issues on Cellular Automata, S. Bandini and T. Worsch (Eds.). Springer, 29--36. Google ScholarGoogle ScholarCross RefCross Ref
  52. D. C. Duives, W. Daamen, and S. P. Hoogerndoorn. 2013. State-of-the-art crowd motion simulation models. Transportation Research Part C: Emerging Technologies 37, 193--209. Google ScholarGoogle ScholarCross RefCross Ref
  53. F. Durupinar, J. Allbeck, N. Pelechano, and N. Badler. 2008. Creating crowd variation with the OCEAN personality model. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems. 1217--1220.Google ScholarGoogle Scholar
  54. C. Ennis and C. O’Sullivan. 2012. Perceptually plausible formations for virtual conversers. Computer Animation and Virtual Worlds 23, 3--4, 321--329.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. R. Ewing, W. Schroeer, and W. Greene. 2007. School location and student travel analysis of factors affecting model choice. Transportation Research Board of the National Academies 1895, 55--63. Google ScholarGoogle ScholarCross RefCross Ref
  56. J. Fang, Z. Qin, H. Hu, Z. Xu, and H. Li. 2012. The fundamental diagram of pedestrian model with slow reaction. Physica A: Statistical Mechanics and Its Applications 391, 23, 6112--6120. Google ScholarGoogle ScholarCross RefCross Ref
  57. F. Feurtey. 2000. Simulating the Collision Avoidance Behavior of Pedestrians. Ph.D. Dissertation. Department of Electronic Engineering, University of Tokyo.Google ScholarGoogle Scholar
  58. P. Fiorini and Z. Shiller. 1998. Motion planning in dynamic environments using velocity obstacles. International Journal on Robotics Research 17, 7, 760--772. Google ScholarGoogle ScholarCross RefCross Ref
  59. R. D. Freimuth and L. Lam. 1992. Active walker models for filamentary growth patterns. In Modeling Complex Phenomena: Proceedings of the 3rd Woodward Conference, L. Lam and V. Naroditsky (Eds.). Springer, 302--314. Google ScholarGoogle ScholarCross RefCross Ref
  60. J. J. Fruin. 1971a. Designing for pedestrians: A level of service concept. Highway Research Record 355, 1--15.Google ScholarGoogle Scholar
  61. J. J. Fruin. 1971b. Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environment Planners, Inc., New York, NY.Google ScholarGoogle Scholar
  62. L. Fu, W. Song, W. Lv, and S. Lo. 2014. Simulation of exit selection behavior using least effort algorithm. Transportation Research Procedia 2, 533--540. Google ScholarGoogle ScholarCross RefCross Ref
  63. R. Gayle, W. Moss, M. C. Lin, and D. Manocha. 2009. Multi-robot coordination using generalized social potential fields. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’09). Google ScholarGoogle ScholarCross RefCross Ref
  64. R. Geraerts and M. H. Overmars. 2007. The corridor map method: A general framework for real-time high-quality path planning: Research articles. Computer Animation and Virtual Worlds 18, 2, 107--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. J. J. Gibson. 1979. The Ecological Approach to Visual Perception. Houghton Mifflin. Boston, MA.Google ScholarGoogle Scholar
  66. M. Gilman, H. Moldovan, and M. Tencer. 2005. Dynamic navigation field—a local and on-demand family of algorithms for wayfinding. In Pedestrian and Evacuation Dynamics 2005. Springer, 239--251.Google ScholarGoogle Scholar
  67. P. G. Gipps and B. Marksjo. 1985. A microsimulation model for pedestrian flows. Mathematics and Computers in Simulation 27, 95--105. Google ScholarGoogle ScholarCross RefCross Ref
  68. A. Golas, R. Narain, S. Curtis, and M. C. Lin. 2014b. Hybrid long-range collision avoidance for crowd simulation. IEEE Transactions on Visualization and Computer Graphics 20, 7, 1022--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. A. Golas, R. Narain, and M. C. Lin. 2014a. Continuum modeling of crowd turbulence. Physical Review E 90, 4, 042816.Google ScholarGoogle ScholarCross RefCross Ref
  70. Y. Gu, R. V. Prasad, and I. Niemegeers. 2011. Mobility modeling for personal networks. Wireless Personal Communications 58, 2, 169--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. R. Y. Guo and H. J. Huang. 2010. Logit-based exit choice model of evacuation in rooms with internal obstacles and multiple exits. Chinese Physics B 19, 3, 030501.Google ScholarGoogle Scholar
  72. R. Y. Guo, H. J. Huang, and S. C. Wong. 2011. Collection, spillback, and dissipation in pedestrian evacuation: A network-based method. Transportation Research Part B: Methodological 45, 490--506. Google ScholarGoogle ScholarCross RefCross Ref
  73. S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. C. Lin, and D. Manocha. 2010. PLEdestrians: A least-effort approach to crowd simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 119--128.Google ScholarGoogle Scholar
  74. S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha, and P. Dubey. 2009. ClearPath: Highly parallel collision avoidance for multi-agent simulation. In Proceedings of the Symposium on Computer Animation. 177--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. S. J. Guy, S. Curtis, M. C. Lin, and D. Manocha. 2012a. Least-effort trajectories lead to emergent crowd behaviors. Physical Review E 85, 0161100--0161107. Google ScholarGoogle ScholarCross RefCross Ref
  76. S. J. Guy, J. von Berg, W. Liu, R. Lau, M. C. Lin, and D. Manocha. 2012b. A statistical similarity measure for aggregate crowd dynamics. ACM Transactions on Graphics 31, 6, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. E. T. Hall. 1963. A system for the notation of proxemic behavior. American Anthropologist 65, 1003--1026. E. T. Hall. 1966. The Hidden Dimension. Anchor Books, New York, NY.Google ScholarGoogle ScholarCross RefCross Ref
  78. B. D. Hankin and R. A. Wright. 1958. Passenger flow in subways. Operations Research Quarterly 9, 81--88. Google ScholarGoogle ScholarCross RefCross Ref
  79. F. S. Hänseler, M. Bierlaire, B. Farooq, and T. Mühlematter. 2014. A macroscopic loading model for time-varying pedestrian flows in public walking areas. Transportation Research Part B: Methodological 6 60--80.Google ScholarGoogle ScholarCross RefCross Ref
  80. D. Hartmann. 2010. Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 12, 043032. Google ScholarGoogle ScholarCross RefCross Ref
  81. L. He, J. Pan, W. Wang, and D. Manocha. 2016. Proxemic group behaviors using reciprocal multi-agent navigation. In Proceedings of the IEEE International Conference on Robotics and Automation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. L. Heïgeas, A. Luciani, J. Thollot, and N. Castagné. 2003. A physically-based particle model of emergent crowd behaviors. In Proceedings of Graphikon 2003.Google ScholarGoogle Scholar
  83. D. Helbing. 1992a. A fluid-dynamic model for the movement of pedestrians. Complex Systems 28, 391--415.Google ScholarGoogle Scholar
  84. D. Helbing. 1992b. Stochastische Methoden, nichtlineare Dynamik ind quantitative Modelle sozialer Prozesse. Ph.D. Dissertation. University of Stuttgart. Germany.Google ScholarGoogle Scholar
  85. D. Helbing, L. Buzna, A. Johanson, and T. Werner. 2005. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. D. Helbing, I. Farkas, and T. Vicsek. 2000. Simulating dynamical features of escape panic. Nature 407, 487--490. Google ScholarGoogle ScholarCross RefCross Ref
  87. D. Helbing, M. Isobe, T. Nagatani, and K. Takimoto. 2003. Lattice gas simulation of experimentally studied evacuation dynamics. Physical Review E 67, 067101. Google ScholarGoogle ScholarCross RefCross Ref
  88. D. Helbing and A. Johansson. 2009. Pedestrian, crowd and evacuation dynamics. In Encyclopedia of Complexity and Systems Science. Vol. 16. Springer, 6476--6495. Google ScholarGoogle ScholarCross RefCross Ref
  89. D. Helbing, A. Johansson, and H. Z. Al-Abideen. 2007. The dynamics of crowd disasters: An empirical study. Physical Review E 75, 046109. Google ScholarGoogle ScholarCross RefCross Ref
  90. D. Helbing, J. Keltsch, and P. Molnár. 1997a. Modelling the evolution of human trail systems. Nature 388, 47--49.Google ScholarGoogle ScholarCross RefCross Ref
  91. D. Helbing and P. Molnár. 1995. Social force model for pedestrian dynamics. Physical Review E 51, 5, 4282--4286.Google ScholarGoogle ScholarCross RefCross Ref
  92. D. Helbing, P. Molnar, and F. Schweitzer. 1997b. Computer simulation of pedestrian dynamics and trail formation. In Proceedings of the 3rd International Symposium on Evolution of Natural Structures.229--234.Google ScholarGoogle Scholar
  93. D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár. 1997c. Active walker model for the formation of human and animal trail systems. Physical Review E 56, 2527.Google ScholarGoogle ScholarCross RefCross Ref
  94. L. F. Henderson. 1971. The statistics of crowd fluids. Nature 229, 381--383. Google ScholarGoogle ScholarCross RefCross Ref
  95. L. F. Henderson. 1974. On the fluid mechanics of human crowd motion. Transportation Research 8, 509--515. Google ScholarGoogle ScholarCross RefCross Ref
  96. K. Hirai and K. Tarui. 1975. A simulation on the behavior of a crowd in panic. In Proceedings of the 1975 International Conference on Cybernetics and Society. 409--411.Google ScholarGoogle Scholar
  97. S. Hoogendoorn and P. H. L. Bovy. 2003. Simulation of pedestrian flows by optimal control and differential games. Optimal Control Applications and Methods 24, 3, 153--172. Google ScholarGoogle ScholarCross RefCross Ref
  98. S. Hoogendoorn and P. H. L. Bovy. 2004a. Dynamic user-optimal assignment in continuous time and space. Transportation Research Part B: Methodologic 38, 7, 571--592. Google ScholarGoogle ScholarCross RefCross Ref
  99. S. Hoogendoorn and P. H. L. Bovy. 2004b. Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodologic 38, 169--190. Google ScholarGoogle ScholarCross RefCross Ref
  100. S. Hoogendoorn, P. Bovy, and W. Daamen. 2003. Walking infrastructure design assessment by continuous space dynamic assignment modeling. Journal of Advanced Transportation 38, 1, 69--92. Google ScholarGoogle ScholarCross RefCross Ref
  101. S. P. Hoogendoorn, F. L. M. van Wageningen-Kessels, W. Daamen, and D. C. Duives. 2014. Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena. Physica A: Statistical Mechanics and Its Applications 416, 684--694. Google ScholarGoogle ScholarCross RefCross Ref
  102. S. P. Hoogendoorn and P. H. L Bovy. 2001. State-of-the-art of vehicular traffic flow modelling. In Proceedings of the Institution of Mechanical Engineers: I 215, 283--303. Google ScholarGoogle ScholarCross RefCross Ref
  103. S. P. Hoogendoorn, P. H. L. Bovy, and W. Daamaen. 2001. Microscopic pedestrian wayfinding and dynamics modeling. In Pedestrian and Evacuation Dynamics. Springer, 123--154.Google ScholarGoogle Scholar
  104. L. Hoyet, A.-H. Olivier, R. Kulpa, and J. Pettré. 2016. Perceptual effect of shoulder motions on crowd animations. ACM Transactions on Graphics 35, 4, 53:1--53:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. L. Hoyet, K. Ryall, K. Zibrek, H. Park, J. Lee, J. Hodgins, and C. O’Sullivan. 2013. Evaluating the distinctiveness and attractiveness of human motions on realistic virtual bodies. ACM Transactions on Graphics 32, 6, 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. 2007. Modeling time-variant user mobility in wireless mobile networks. In Proceedings of IEEE INFOCOM 2007. 758--766. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. L. Huang, S. C. Wong, M. Zhang, C.-W. Shu, and W. H. K. Lam. 2009. Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodologic 43, 1, 127--141. Google ScholarGoogle ScholarCross RefCross Ref
  108. R. L. Hughes. 2002. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodologic 36, 507--535. Google ScholarGoogle ScholarCross RefCross Ref
  109. R. L. Hughes. 2003. The flow of human crowds. Annual Review of Fluid Mechanics 35, 169--182. Google ScholarGoogle ScholarCross RefCross Ref
  110. X. Ji, J. Zhang, Y. Hu, and B. Ran. 2016. Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based. Physica A 450, 416--434. Google ScholarGoogle ScholarCross RefCross Ref
  111. A. Johansson. 2009. Constant-net-time headway as a key mechanism behind pedestrian flow dynamics. Physical Review E 80, 026120. Google ScholarGoogle ScholarCross RefCross Ref
  112. A. Johansson, D. Helbing, and P. K. Shukla. 2007. Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems 10, 2, 271--288. Google ScholarGoogle ScholarCross RefCross Ref
  113. D. B. Johnson and D. A. Maltz. 1996. Dynamic source routing in ad hoc wireless networks. In Mobile Computing. Kluwer International Series in Engineering and Computer Science, Vol. 353. Kluwer Academic, Boston, MA, 153--181. Google ScholarGoogle ScholarCross RefCross Ref
  114. E. Ju, M. G. Choi, M. Park, J. Lee, K. H. Lee, and S. Takahashi. 2010. Morphable crowds. ACM Transactions on Graphics 29, 6, 140:1--140:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. B. R. Kadali and P. Vedagiri. 2016. Review of pedestrian level of service. Transportation Research Record 2581, 37--47. Google ScholarGoogle ScholarCross RefCross Ref
  116. I. Karamouzas, P. Heil, P. Beek, and M. H. Overmars. 2009. A predictive collision avoidance model for pedestrian simulation. In Proceedings of the International Workshop on Motion in Games. 41--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. I. Karamouzas and M. Overmars. 2012. Simulating and evaluating the local behavior of small pedestrian groups. IEEE Transactions on Visualization and Computer Graphics 18, 3, 394--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. I. Karamouzas, B. Skinner, and S. J. Guy. 2014. Universal power law governing pedestrian interactions. Physical Review Letters 113, 23, 238701.Google ScholarGoogle ScholarCross RefCross Ref
  119. L. E. Kavraki, P. Švestka, J. Latombe, and M. H. Overmars. 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12, 4, 566--580.Google ScholarGoogle ScholarCross RefCross Ref
  120. U. Kemloh, B. Steffen, A. Seyfried, and M. Chraibi. 2013. Parallel real time computation of large scale pedestrian evacuations. Advances in Engineering Software 60-61, 0, 98--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. S. Kim, A. Bera, A. Best, R. Chabra, and D. Manocha. 2016. Interactive and adaptive data-driven crowd simulation. In Proceedings of the IEEE Conference on Virtual Reality. Google ScholarGoogle ScholarCross RefCross Ref
  122. A. Kirchner, H. Klüpfel, K. Nishinari, A. Schadschneider, and M. Schreckenberg. 2003a. Simulation of competitive egress behavior: Comparison with aircraft evacuation data. Physica A: Statistical Mechanics and Its Applications 324, 3-4, 689--697.Google ScholarGoogle ScholarCross RefCross Ref
  123. A. Kirchner, K. Nishinari, and A. Schadschneider. 2003b. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Physical Review E 67, 5 Pt 2, 056122. Google ScholarGoogle ScholarCross RefCross Ref
  124. A. Kirchner and A. Schadschneider. 2002. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260--276. Google ScholarGoogle ScholarCross RefCross Ref
  125. H. Kladek. 1966. Über die Geschwindigkeistscharakteristik auf Stadtstraßenabschnitten. Ph.D. Dissertation. Hochschule für Verkehrswesen Friedrich List, Dresden, Germany.Google ScholarGoogle Scholar
  126. A. Kneidl, D. Hartmann, and A. Borrmann. 2013. A hybrid multi-scale approach for simulation of pedestrian dynamics. Transportation Research Part C: Emerging Technologies 37, 0, 223--237. Google ScholarGoogle ScholarCross RefCross Ref
  127. R. Knoblauch, M. Pietrucha, and M. Nitzburg. 2007. Field studies of pedestrian walking speed and start-up time. Transportation Research Record: Journal of the Transportation Research Board 1538, 27--38. Google ScholarGoogle ScholarCross RefCross Ref
  128. S. Kosta, A. Mei, and J. Stefa. 2014. Large-scale synthetic social mobile networks with SWIM. IEEE Transactions on Mobile Computing 13, 1, 116--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. T. Kretz. 2007. Pedestrian Traffic: Simulations and Experiments. Ph.D. Dissertation. Department of Physics, University of Duisburg-Essen, Germany.Google ScholarGoogle Scholar
  130. T. Kretz. 2009. Pedestrian traffic: On the quickest path. Journal of Statistical Mechanics: Theory and Experiment 3, p03012. Google ScholarGoogle ScholarCross RefCross Ref
  131. T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, and M. Schreckenberg. 2006. Experimental study of pedestrian counterflow in a corridor. Journal of Statistical Mechanics: Theory and Experiment 2006, 10.Google ScholarGoogle ScholarCross RefCross Ref
  132. T. Kretz, K. Lehmann, and I. Hofäss. 2013. Pedestrian route choice by iterated equilibrium search. In Traffic and Granular Flow, M. Chraubi, M. Boltes, A. Schadschneider, and A. Seyfried (Eds.). Springer, 47--54.Google ScholarGoogle Scholar
  133. H. Kretzschmar, M. Kuderer, and W. Burgard. 2014. Learning to predict trajectories of cooperatively navigating agents. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’14). Google ScholarGoogle ScholarCross RefCross Ref
  134. J. Kuffner. 1999. Fast synthetic vision, memory, and learning models for virtual humans. In Proceedings of the Conference on Computer Animation. 118--127. Google ScholarGoogle ScholarCross RefCross Ref
  135. T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein. 2005. Modifications of the Helbing-Molnár-Farkas-Vicksek social force model for pedestrian evolution. Simulation 81, 5, 339--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. W. H. K. Lam and C. Y. Cheung. 2000. Pedestrian speed-flow relationships for walking facilities in hong-kong. Journal of Transportation Engineering 126, 343--349. Google ScholarGoogle ScholarCross RefCross Ref
  137. W. H. K. Lam, J. Y. S. Lee, K. S. Lee, and P. K. Goh. 2003. A generalised function for modeling bi-directional flow effects on indoor walkways in hong kong. Transportation Research Part A: Policy and Practice 37, 9, 789--810. Google ScholarGoogle ScholarCross RefCross Ref
  138. W. H. K. Lam, J. F. Morrall, and H. Ho. 1995. Pedestrian flow characteristics in hong kong. Transportation Research Record: Journal of the Transportation Research Board 1487, 56--62.Google ScholarGoogle Scholar
  139. G. Lämmel, H. Klüpfel, and K. Nagel. 2009. Pedestrian Behavior. In The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning. Emerald, Bingley, West Yorkshire, England, 244--265.Google ScholarGoogle Scholar
  140. S. M. LaValle. 2006. Planning Algorithms. Cambridge. Google ScholarGoogle ScholarCross RefCross Ref
  141. G. Le Bon. 1895. Psychologie des Foules, F. Alcan (Ed.). Paris.Google ScholarGoogle Scholar
  142. K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. 2012. SLAW: Self-similar least-action human walk. IEEE/ACM Transactions on Networking 20, 2, 515--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. K. H. Lee, M. G. Choi, Q. Hong, and J. Lee. 2007. Group behavior from video: A data-driven approach to crowd simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 109--118.Google ScholarGoogle Scholar
  144. F. Legendre, V. Borrel, M. Dias De Amorim, and S. Fdida. 2006. Reconsidering microscopic mobility modeling for self-organizing networks. IEEE Network 20, 6, 4--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian, and J. Pettré. 2012. Realistic following behaviors for crowd simulation. Computer Graphics Forum 31, 2, 489--498.Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. B. Leng, J. Wang, W. Zhao, and Z. Xiong. 2014. An extended floor field model based on regular hexagonal cells for pedestrian simulation. Physica A: Statistical Mechanics and Its Applications 402, C, 119--133. Google ScholarGoogle ScholarCross RefCross Ref
  147. A. Lerner, Y. Chrysanthou, and D. Lischinski. 2007. Crowds by example. Computer Graphics Forum 26, 3, 655--664. Google ScholarGoogle ScholarCross RefCross Ref
  148. D. W. Li and B. M. Han. 2011. Modeling queue service system in pedestrian simulation. Advanced Materials Research 187, 1, 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  149. T. Li, H. Chang, M. Wang, B. Ni, R. Hong, and S. Yan. 2015. Crowded scene analysis: A survey. IEEE Transactions on Circuits and Systems for Video Technology 25, 3, 367--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. G. G. Lovas. 1994. Modeling and simulation of pedestrian traffic flow. Transportation Research Part B: Methodologic 28, 6, 429--443. Google ScholarGoogle ScholarCross RefCross Ref
  151. R. Lubaś, J. Wąs, and J. Porzycki. 2016. Cellular automata as the basis of effective and realistic agent-based models of crowd behavior. Journal of Supercomputing 72, 6, 2170--2196.Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. L. Manenti and S. Manzoni. 2011. Crystals of crowd: Modelling pedestrian groups using MAS-based approach. In Proceedings of the Workshop on Objects and Agents. 51--57.Google ScholarGoogle Scholar
  153. N. Margolus and T. Toffoli. 1987. Cellular automata machines. Complex Systems 1, 967--993.Google ScholarGoogle Scholar
  154. J. G. Markoulidakis, G. L. Lyberopoulos, D. F. Tsirkas, and E. D. Sykas. 1997. Mobility modeling in third-generation mobile telecommunications systems. IEEE Personal Communications 4, 4, 41--56. Google ScholarGoogle ScholarCross RefCross Ref
  155. F. Martinez-Gil, F. Barber, M. Lozano, F. Grimaldo, and F. Fernández. 2010. A reinforcement learning approach for multiagent navigation. In Proceedings of the International Conference on Agents and Artificial Intelligence. 607--610.Google ScholarGoogle Scholar
  156. F. Martinez-Gil, M. Lozano, and F. Fernández. 2014. MARL-Ped: A multi-agent reinforcement learning based framework to simulate pedestrian groups. Simulation Modelling Practice and Theory 47, 259--275.Google ScholarGoogle ScholarCross RefCross Ref
  157. F. Martinez-Gil, M. Lozano, and F. Fernández. 2015. Strategies for simulating pedestrian navigation with multiple reinforcement learning agents. Autonomous Agents and Multi-Agent Systems 29, 1, 98--130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. A. D. May. 1990. Traffic Flow Fundamental. Prentice Hall.Google ScholarGoogle Scholar
  159. R. McDonnell, S. Jörg, J. K. Hodgins, F. Newell, and C. O’Sullivan. 2009. Evaluating the effect of motion and body shape on the perceived sex of virtual characters. ACM Transactions on Applied Perception 5, 4, 20:1--20:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. D. McFadden. 1981. Structural analysis of discrete data with econometric applications. In Econometric Models of Probabilistic Choice. MIT Press, Cambridge, MA, 198--269.Google ScholarGoogle Scholar
  161. A. Medina, G. Gursun, P. Basu, and I. Matta. 2010. On the universal generation of mobility models. In Proceedings of the 2010 IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’10). 444--446. Google ScholarGoogle ScholarCross RefCross Ref
  162. R. Mehran, A. Oyama, and M. Shah. 2009. Abnormal crowd behavior detection using social force model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09). 935--942. Google ScholarGoogle ScholarCross RefCross Ref
  163. A. Mei and J. Stefa. 2009. SWIM: A simple model to generate small mobile worlds. In Proceedings of IEEE INFOCOM 2009. 2106--2113. Google ScholarGoogle ScholarCross RefCross Ref
  164. J. Meister. 2006. Simulation von Panikverhalten in Gebäuden. Seminar. Fachhochschule Wedel.Google ScholarGoogle Scholar
  165. T. Meyer-König, H. Küpfel, and M. Schreckenberg. 2001. A microscopic model for simulating mustering evacuation processes onboard passenger ships. In Proceedings of the International Emergency Management Society Conference.Google ScholarGoogle Scholar
  166. D. H. Mitchell and J. MacGregor. 2001. Topological network design of pedestrian networks. Transportation Research Part B: Methodological 35, 2, 107--135. Google ScholarGoogle ScholarCross RefCross Ref
  167. J. F. Morrall, L. L. Ratnayake, and P. N. Seneviratne. 1991. Comparison of central business district pedestrian characteristics in Canada and Sri Lanka. Transportation Research Record: Journal of the Transportation Research Board 1294, 57--61.Google ScholarGoogle Scholar
  168. V. F. S. Mota, F. D. Cunha, D. F. Macedo, J. M. S. Nogueira, and A. A. F. Loureiro. 2014. Protocols, mobility models and tools in opportunistic networks: A survey. Computer Communications 48, 5--19. Google ScholarGoogle ScholarCross RefCross Ref
  169. M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond, and G. Theraulaz. 2012. Traffic instabilities in self-organized pedestrian crowds. PLOS Computational Biology 8, 3, e1002442.Google ScholarGoogle ScholarCross RefCross Ref
  170. M. Muramatsu, T. Irie, and T. Nagatani. 1999. Jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and Its Applications 267, 3--4, 487--498. Google ScholarGoogle ScholarCross RefCross Ref
  171. M. Muramatsu and T. Nagatani. 2000. Jamming transition in two-dimensional pedestrian traffic. Physica A: Statistical Mechanics and Its Applications 275, 1--2, 281--291. Google ScholarGoogle ScholarCross RefCross Ref
  172. M. Musolesi and C. Mascolo. 2007. Designing mobility models based on social network theory. ACM Sigmobile Mobile Computing and Communications Review 11, 3, 59--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. M. Musolesi and C. Mascolo. 2009. Mobility models for systems evaluation. In Middleware for Network Eccentric and Mobile Applications. Springer, 43--62. Google ScholarGoogle ScholarCross RefCross Ref
  174. S. R. Musse and D. Thalmann. 1997. A model of human crowd behavior: Group interrelationship and collision detection analysis. In Proceedings of the Eurographics Workshop on Animation and Simulation (Eurographics’97). 39--51.Google ScholarGoogle Scholar
  175. S. R. Musse and D. Thalmann. 2001. Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 152--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. R. Narain, A. Golas, S. Curtis, and M. C. Lin. 2009. Aggregate dynamics for dense crowd simulation. ACM Transactions on Graphics 28, 5, 122:1--122:8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. S. Narang, A. Best, S. Curtis, and D. Manocha. 2015. Generating pedestrian trajectories consistent with the fundamental diagram based on physiological and psychological factors. PLoS One 10, 4, e0117856.Google ScholarGoogle ScholarCross RefCross Ref
  178. P. D. Navin and R. J. Wheeler. 1969. Pedestrian flow characteristics. Traffic Engineering and Control 39, 9, 30--36.Google ScholarGoogle Scholar
  179. H. E. Nelson and F. W. Mowrer. 2002. Emergency movement. In SFPE Handbook of Fire Protection Engineering (3rd ed.). National Fire Protection Association, Washington, DC, 367--380.Google ScholarGoogle Scholar
  180. M. E. J. Newman. 2011. Complex systems: A survey. American Journal of Physics 79, 800--810. Google ScholarGoogle ScholarCross RefCross Ref
  181. M. Nikolic, M. Bierlaire, B. Farooq, and M. de Lapparent. 2016. Probabilistic speed-density relationship for pedestrian traffic. Transportation Research Part B: Methodologic 89, 58--81. Google ScholarGoogle ScholarCross RefCross Ref
  182. M. Nikolic, M. Bierlaire, and F. S. Hänseler. 2015. Characterization of multidirectional pedestrian flows based on three-dimensional Voronoi tessellations. In Proceedings of the 4th Symposium of the European Association for Research in Transportation.Google ScholarGoogle Scholar
  183. C. Nitzsche. 2013. Cellular Automata Modeling for Pedestrian Dynamics. Ph.D. Dissertation. Ernst-Moritz-Arndt Universitat Greifswald, Greifswald, Germany.Google ScholarGoogle Scholar
  184. H. Noser, O. Renault, D. Thalmann, and N. Magnenat-Thalmann. 1995. Navigation for digital actors based on synthetic vision, memory and learning. Computers and Graphics 19, 7--19. Google ScholarGoogle ScholarCross RefCross Ref
  185. S. Nowak and A. Schadschneider. 2013. A cellular automaton approach for lane formation in pedestrian counterflow. In Traffic and Granular Flow’11. Springer, 149--160. Google ScholarGoogle ScholarCross RefCross Ref
  186. D. Oeding. 1963. Verkehrsbelastung und dimensionierung von gehwegen und anderen anlagen des fussgaengerverkehrs. Strassenbau und Strassenverkehrstechnik.Google ScholarGoogle Scholar
  187. E. Okada and Y. Asami. 2007. A pedestrian route choice model to evaluate alternative plans for regeneration of galata region. ARI Bulletin of the Istanbul Technical University 55, 11--32.Google ScholarGoogle Scholar
  188. S. Okazaki. 1978. A study of pedestrian movement in architectural space. Part 2: Concentrated pedestrian movement. Transactions of the Architectural Institute of Japan 284, 101--110. Google ScholarGoogle ScholarCross RefCross Ref
  189. S. Okazaki and S. Matsushita. 1993. A study of simulation model for pedestrian movement with evacuation and queueing. In Proceedings of the International Conference on Engineering for Crowd Safety. 271--280.Google ScholarGoogle Scholar
  190. S. J. Older. 1968. Movement of pedestrians on footways in shopping streets. Traffic Engineering and Control 10, 160--163.Google ScholarGoogle Scholar
  191. R. Oliva and N. Pelechano. 2015. Clearance for diversity of agents’ sizes in navigation meshes. Computers and Graphics 47, C, 48--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  192. A. H. Olivier, J. Bruneau, G. Cirio, and J. Pettré. 2014. A virtual reality platform to study crowd behaviors. Transportation Research Procedia 2, 114--122.Google ScholarGoogle ScholarCross RefCross Ref
  193. A. H. Olivier, A. Marin, A. Crétual, and J. Pettré. 2012. Minimal predicted distance: A common metric for collision avoidance during pairwise interactions between walkers. Gait and Posture 36, 399--404.Google ScholarGoogle ScholarCross RefCross Ref
  194. J. Ondrej, J. Pettré, A. H. Olivier, and S. Donikian. 2010. A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics 29, 4, Article No. 123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  195. E. Papadimitriou, G. Yannis, and J. Golias. 2009. A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour 12, 3, 242--255. Google ScholarGoogle ScholarCross RefCross Ref
  196. S. Paris, J. Pettré, and S. Donikian. 2007. Pedestrian reactive navigation for crowd simulation: A predictive approach. Computer Graphics Forum 26, 3, 665--674.Google ScholarGoogle ScholarCross RefCross Ref
  197. S. Patil, J. von Berg, S. Curtis, M. C. Lin, and D. Manocha. 2011. Directing crowd simulations using navigation fields. IEEE Transactions on Visualization and Computer Graphics 17, 244--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. J. L. Pauls. 1977. Movement of people in building evacuation. In Human Response to Tall Buildings. John Wiley 8 Sons, 281--292.Google ScholarGoogle Scholar
  199. N. Pelechano, J. Allbeck, and N. Badler. 2007. Controlling individual agents in high-density crowd simulation. In Proceedings of the ACM/SIGGRAPH/Eurographics Symposium on Computer Animation. 99--108.Google ScholarGoogle Scholar
  200. N. Pelechano, J. Allbeck, and N. Badler. 2008a. Virtual Crowds. Methods, Simulation and Control. Morgan 8 Claypool.Google ScholarGoogle Scholar
  201. N. Pelechano, J. Allbeck, M. Kapadia, and N. Badler. 2016. Simulating Heterogeneous Crowds With Interactive Behaviors. CRC Press, Boca Raton, FL. Google ScholarGoogle ScholarCross RefCross Ref
  202. N. Pelechano and N. Badler. 2006. Modeling crowd and trained leader behavior during building evacuation. IEEE Computer Graphics and Applications 26, 80--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. N. Pelechano, C. Stocker, J. Allbeck, and N. Badler. 2008b. Being a part of the crowd: Towards validating VR crowds using presence. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems. 136--142.Google ScholarGoogle Scholar
  204. S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. 2009. You’ll never walk alone: Modeling social behavior for multi-target tracking. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. 261--268. Google ScholarGoogle ScholarCross RefCross Ref
  205. A. Penn and A. Turner. 2001. Pedestrian and evacuation dynamics. In Space Syntax Based Agent Simulation. Springer, 99--114.Google ScholarGoogle Scholar
  206. C. Peters and C. Ennis. 2009. Modeling groups of plausible virtual pedestrians. IEEE Computer Graphics and Applications 29, 4, 54--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  207. C. Peters and C. O’Sullivan. 2003. Bottom-up visual attention for virtual human animation. In Proceedings of the International Conference on Computer Animation and Social Agents. 111--117. Google ScholarGoogle ScholarCross RefCross Ref
  208. T. Petritsch, B. Landis, H. Huang, and R. Dowling. 2008. Pedestrian level-of-service model for arterials. Transportation Research Record: Journal of the Transportation Research Board 2586, 9--16. Google ScholarGoogle ScholarCross RefCross Ref
  209. T. Petritsch, B. Landis, P. McLeod, H. Huang, S. Challa, and M. Guttenplan. 2005. Level-of-service model for pedestrians at signalized intersections. Transportation Research Record: Journal of the Transportation Research Board 1939, 53--62. Google ScholarGoogle ScholarCross RefCross Ref
  210. J. Pettré, P. H. Ciechomski, J. Maïm, B. Yersin, J. P. Laumond, and D. Thalmann. 2006. Real-time navigating crowds: Scalable simulation and rendering: Research articles. Computer Animation and Virtual Worlds 17, 3--4, 445--455.Google ScholarGoogle ScholarCross RefCross Ref
  211. J. Pettré, H. Grillon, and D. Thalmann. 2007. Crowds of moving objects: Navigation planning and simulation. In Proceedings of the IEEE International Conference on Robotics and Automation. 3062--3067.Google ScholarGoogle Scholar
  212. J. Pettré, J. Ondrej, A.-H. Olivier, A. Creutal, and S. Donikian. 2009. Experiment-based modeling, simulation and validation of interactions between virtual walkers. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 189--198.Google ScholarGoogle Scholar
  213. P. Pirozmand, G. Wu, B. Jedari, and F. Xia. 2014. Human mobility in opportunistic networks: Characteristics, models and prediction methods. Journal of Network and Computer Applications 42, 45--58. Google ScholarGoogle ScholarCross RefCross Ref
  214. A. Pluchino, C. Garofalo, G. Inturri, A. Rapisarda, and M. Ignaccolo. 2014. Agent-based simulation of pedestrian behaviour in closed spaces: A museum case study. Journal of Artificial Societies and Social Simulation 17, 1, 16.Google ScholarGoogle ScholarCross RefCross Ref
  215. J. Porzycki, R. Lubaś, and J. Wąs. 2013. Dynamic data-driven simulation of pedestrian movement with automatic validation. In Traffic and Granular Flow’13, M. Chraubi, M. Boltes, A. Schadschneider, and A. Seyfried (Eds.). Springer, 47--54.Google ScholarGoogle Scholar
  216. M. Pražák, L. Hoyet, and C. O’Sullivan. 2011. Perceptual evaluation of footskate cleanup. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 287--294.Google ScholarGoogle Scholar
  217. V. M. Predtechenskii and A. I. Milinskii. 1978. Planning for Foot Traffic Flow in Buildings. Amerind Publishing, New Delhi, India.Google ScholarGoogle Scholar
  218. B. Pushkarev and J. M. Zupan. 1975. Urban Space for Pedestrians. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  219. K. Rahman, N. A. Ghani, A. A. Kamil, A. Mustafa, and M. K. Chowdhury. 2013. Modelling pedestrian travel time and the design of facilities: A queueing approach. PLoS One 8, 5, e63503.Google ScholarGoogle ScholarCross RefCross Ref
  220. M. S. Ramming. 2002. Network Knowledge and Route Choice. Ph.D. Dissertation. MIT, Cambridge, MA.Google ScholarGoogle Scholar
  221. O. Renault, N. Magnenat-Thalmann, and D. Thalmann. 1990. A vision-based approach to behavioral animation. Visualization and Computer Animation 1, 18--21. Google ScholarGoogle ScholarCross RefCross Ref
  222. C. Reynolds. 1999. Steering behaviors for autonomous characters. In Proceedings of the Game Developers Conference. 763--782.Google ScholarGoogle Scholar
  223. C. W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral model. Computer Graphics 4, 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. T. Robin, G. Antonini, M. Bierlaire, and J. Cruz. 2009. Specification, estimation and validation of a pedestrian walking behavior model. Transportation Research Part B: Methodologic 43, 1, 36--56. Google ScholarGoogle ScholarCross RefCross Ref
  225. P. Saboia and S. Goldenstein. 2011. Crowd simulation: Improving pedestrians’ dynamics by the application of lattice-gas concepts to the social force model. In Proceedings of the 2011 24th SIGGRAPH Conference on Graphics, Patterns, and Images. 41--47.Google ScholarGoogle Scholar
  226. A. Sahaleh, M. Bierlaire, B. Farooq, A. Danalet, and F. S. Hänseler. 2012. Scenario analysis of pedestrian flow in public spaces. In Proceedings of the Swiss Transport Research Conference (STRC’12).Google ScholarGoogle Scholar
  227. M. Sánchez and P. Manzoni. 2001. ANEJOS: A java based simulator for ad hoc networks. Future Generation Computer Systems 17, 5, 573--583.Google ScholarGoogle ScholarDigital LibraryDigital Library
  228. A. Schadschneider. 2002. Cellular automaton approach to pedestrian dynamics. In Pedestrian and Evacuation Dynamics. Springer, 75--86.Google ScholarGoogle Scholar
  229. A. Schadschneider and A. Seyfried. 2009b. Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybernetics and Systems 40, 5, 367--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  230. A. Schadschneider, C. Eilhardt, S. Nowak, A. U. K. Wagoum, and A. Seyfried. 2013. HERMES: An evacuation assistant for large sports arenas based on microscopic simulations of pedestrian dynamics. In Traffic and Granular Flow’11, V. V. Kozlov, P. P. A. Buslaev, S. A. Bugaev, V. M. Yashina, A. Schadschneider, and M. Schreckenberg (Eds.). Springer, 287--298. Google ScholarGoogle ScholarCross RefCross Ref
  231. A. Schadschneider, W. Klingsch, H. Kluepfel, T. Kretz, C. Rogsch, and A. Seyfried. 2008. Evacuation Dynamics: Empirical Results, Modelling and Applications. Encyclopedia of Complexity and Systems Science, R. A. Meyers (Ed.). Springer, 3142--3176.Google ScholarGoogle Scholar
  232. A. Schadschneider, H. Klüpfel, T. Kretz, C. Rogsch, and A. Seyfried. 2009. Fundamentals of pedestrian and evacuation dynamics. In Multi-Agent Systems for Traffic and Transportation Engineering. IGI Global, Hershey, PA, 124--154.Google ScholarGoogle Scholar
  233. A. Schadschneider and A. Seyfried. 2009a. Empirical results for pedestrian dynamics and their implications for cellular automata models. In Pedestrian Behavior. Emerald, Bingley, West Yorkshire, England, 27--43. Google ScholarGoogle ScholarCross RefCross Ref
  234. L. Schauer, M. Werner, and P. Marcus. 2014. Estimating crowd densities and pedestrian flows using Wi-Fi and Bluetooth. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services (MOBIQUITOUS’14). 171--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  235. S. Seer, N. Brändle, and D. Bauer. 2010. Design of decision rules for crowd controlling using macroscopic pedestrian flow simulation. In Pedestrian and Evacuation Dynamics’08. Springer, 577--583.Google ScholarGoogle Scholar
  236. M. Seitz and G. Köster. 2012. Natural discretization of pedestrian movement in continuous space. Physical Review E 86, 046108.Google ScholarGoogle ScholarCross RefCross Ref
  237. A. Seyfried, J. E. Andresen, M. Boltes, W. Mehner, S. Holl, and A. Schadschneider. 2014. Universalities in fundamental diagrams of cars, bicycles and pedestrians. In Proceedings of the Symposium Celebrating 50 Years of Traffic Flow Theory.Google ScholarGoogle Scholar
  238. A. Seyfried and A. Schadschneider. 2008. Fundamental diagram and validation of crowd models. In Cellular Automata, H. Umeo, S. Morshita, K. Nishinari, T. Komatxuzaki, and S. Bandini (Eds.). Springer, 563--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  239. A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes. 2005. The fundamental diagram of pedestrian movement revisited. Journal of Statistical Mechanics: Theory and Experiment 2005, P10002. Google ScholarGoogle ScholarCross RefCross Ref
  240. A. Seyfried, B. Steffen, and T. Lippert. 2006. Basics of modelling the pedestrian flow. Physica A: Statistical Mechanics and Its Applications 368, 1, 232--238. Google ScholarGoogle ScholarCross RefCross Ref
  241. A. Seyfried, B. Steffen, A. Winkens, T. Rupprecht, M. Boltes, and W. Klingsch. 2013. Empirical data for pedestrian flow through bottlenecks. In Traffic and Granular Flow’07. Springer, 189--199.Google ScholarGoogle Scholar
  242. W. Shao and D. Terzopoulos. 2005. Autonomous pedestrians. In Proceedings of the 2005 ACM SIGGRAPH Symposium on Computer Animation. 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  243. S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman. 2009. SteerBench: A benchmark suite for evaluating steering behaviors. Computer Animation and Virtual Worlds 20, 5--6, 533--548. Google ScholarGoogle ScholarCross RefCross Ref
  244. G. Snook. 2000. Simplified 3D movement and pathfinding using navigation meshes. In Game Programming Gems. Charles River Media, Newton Centre, MA, 288--304.Google ScholarGoogle Scholar
  245. R. S. Sobel and N. Lillith. 1975. Determinant of nonstationary personal space invasion. Journal of Social Psychology 97, 39--45. Google ScholarGoogle ScholarCross RefCross Ref
  246. B. Steffen and A. Seyfried. 2010. Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A 389, 1902--1910. Google ScholarGoogle ScholarCross RefCross Ref
  247. A. Steiner, M. Philipp, and A. Schmid. 2007. Parameter estimation for pedestrian simulation model. In Proceedings of the 7th Swiss Transport Research Conference.1--29.Google ScholarGoogle Scholar
  248. K. Still. 2000. Crowd Dynamics. Ph.D. Dissertation. Department of Mathematics, Warwick University, London, UK.Google ScholarGoogle Scholar
  249. D. Stoyan and D. J. Daley. 1983. Comparison Methods for Queues and Other Stochastic Models. John Wiley 8 Sons, New York, NY.Google ScholarGoogle Scholar
  250. S. Stylianou, M. Fyrillas, and Y. Chrysanthou. 2004. Scalable pedestrian simulation for virtual cities. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology. 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  251. A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha. 2007. Real-time navigation of independent agents using adaptive roadmaps. In Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology. 99--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. R. S. Sutton and A. G. Barto. 1998. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. K. Teknomo. 2002. Microscopic Pedestrian Flow Characteristics: Development of an Image Processing Data Collection and Simulation Model. Ph.D. Dissertation. Department of Human Social Information Sciencies, Tohoku University, Sendai, Miyagi, Japan.Google ScholarGoogle Scholar
  254. K. Teknomo, Y. Takeyama, and H. Inamura. 2000. Data collection method for pedestrian movement variables. Civil Engineering Dimension 2, 1, 43--48.Google ScholarGoogle Scholar
  255. J. A. Templer. 1974. Stair Shape and Human Movement. Ph.D. Dissertation. Columbia University, New York, NY.Google ScholarGoogle Scholar
  256. D. Terzopoulos and T. F. Rabie. 1997. Animat vision: Active vision in artificial animals. Videre: Journal of Computer Vision Research 1, 1, 1--19.Google ScholarGoogle Scholar
  257. D. Thalmann and S. R. Musse. 2012. Crowd Simulation (2nd ed.). Springer, London, England.Google ScholarGoogle Scholar
  258. A. Tomoeda, D. Yanagisawa, T. Imamura, and K. Nishinari. 2013. Optimal density in a queue with starting-wave. In Traffic and Granular Flow’11. Springer, 171--178. Google ScholarGoogle ScholarCross RefCross Ref
  259. L. Torrey. 2010. Crowd simulation via multi-agent reinforcement learning. In Proceedings of the 6th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.Google ScholarGoogle ScholarCross RefCross Ref
  260. A. Tosin. 2014. Multiscale crowd dynamics modeling and theory. In Collective Dynamics From Bacteria to Crowds. CISM International Centre for Mechanical Sciences, Vol. 553. Springer, 157--177. Google ScholarGoogle ScholarCross RefCross Ref
  261. K. Train. 2003. Discrete Choice Methods With Simulation. Cambridge University Press, Cambridge, England. Google ScholarGoogle ScholarCross RefCross Ref
  262. A. Treuille, S. Cooper, and Z. Popovic. 2006. Continuum crowds. ACM Transactions on Graphics 25, 3, 1160--1168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  263. J. Treurniet. 2014. A taxonomy and survey of microscopic mobility models from the mobile networking domain. ACM Computing Surveys 47, 1, 14:1--14:32.Google ScholarGoogle Scholar
  264. J. van den Berg and H. B. Bouvy. 1994. Pedestrian Flow (Survey of Literature). Delft University of Technology, Delft, Netherlands.Google ScholarGoogle Scholar
  265. J. van den Berg, S. Guy, M. Lin, and D. Manocha. 2011. Reciprocal n-body collision avoidance. In Robotics Research, Springer, 3--19. Google ScholarGoogle ScholarCross RefCross Ref
  266. J. van den Berg, M. Lin, and D. Manocha. 2008a. Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of the IEEE International Conference on Robotics and Automation. 1928--1935. Google ScholarGoogle ScholarCross RefCross Ref
  267. J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. C. Lin. 2008b. Interactive navigation of multiple agents in crowded environments. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games (I3D’08). 139--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  268. A. Varas, M. D. Corneo, D. Mainemer, B. Toledo, J. Rogan, V. Muñoz, and J. A. Valdivia. 2007. Cellular automaton model for evacuation process with obstacles. Physica A 382, 631--642.Google ScholarGoogle ScholarCross RefCross Ref
  269. R. A. Vincent, A. I. Mitchell, and D. I. Robertson. 1980. User Guide to TRANSYT Version 8. Manual LR 888. Transport and Road Research Laboratory.Google ScholarGoogle Scholar
  270. V. Vukadinovic, F. Dreier, and S. Mangold. 2014. Impact of human mobility on wireless ad hoc networking in entertainment parks. Ad Hoc Networks 12, 17--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  271. A. U. K. Wagoum, M. Chraibi, J. Mehlich, A. Seyfried, and A. Schadschneider. 2010. Efficient and validated simulation of crowds for an evacuation assistant. Computer Animation and Virtual Worlds 23, 1, 3--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  272. J. Ward. 2007. Urban Movement: Models of Pedestrian Activity. Ph.D. Dissertation. University College, London, UK.Google ScholarGoogle Scholar
  273. S. Wei-Guo, Y. Yan-Fei, W. Bing-Hong, and F. Wei-Cheng. 2006. Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model. Physica A 371, 658--666. Google ScholarGoogle ScholarCross RefCross Ref
  274. U. Weidmann. 1993. Transporttechnik der Fussgänger—Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturstudie). Literature Research 90. IVT an der ETH Zürich, Zürich, Switzerland.Google ScholarGoogle Scholar
  275. J. Wąs. 2008. Multi-agent frame of social distances model. In Cellular Automata. Lecture Notes in Computer Science, Vol. 5191. Springer, 571--574.Google ScholarGoogle Scholar
  276. J. Wąs, B. Gudowski, and P. J. Matuszyk. 2006. Social distances model of pedestrian dynamics. In Cellular Automata. Lecture Notes in Computer Science, Vol. 4173. Springer, 492--501.Google ScholarGoogle Scholar
  277. D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré. 2014. Parameter estimation and comparative evaluation of crowd simulations. Computer Graphics Forum 33, 2, 303--312.Google ScholarGoogle ScholarDigital LibraryDigital Library
  278. M. Wooldridge. 2003. Reasoning About Rational Agents. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  279. M. Wooldridge. 2013. Intelligent agents. In Multi-Agent Systems (2nd ed.). MIT Press, Cambridge, MA, 3--50.Google ScholarGoogle Scholar
  280. M. J. Wooldridge and N. R. Jennings. 1995. Intelligent agents: Theory and practice. Knowledge Engineering Review 10, 115--152. Google ScholarGoogle ScholarCross RefCross Ref
  281. Y. K. Yan. 2010. Improved Social Force Model for Building Evacuation Simulation. Ph.D. Dissertation. University of Hong Kong.Google ScholarGoogle Scholar
  282. L. Z. Yang, D. Zhao, J. Li, and T. Y. Fang. 2005. Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment 40, 411--415. Google ScholarGoogle ScholarCross RefCross Ref
  283. B. Yersin, J. Maïm, P. Ciechomski, S. Schertenleib, and D. Thalmann. 2005. Steering a virtual crowd based on a semantically augmented navigation graph. In Proceedings of the International Workshop on Crowd Simulation. 169--178.Google ScholarGoogle Scholar
  284. E. Yilmaz, V. Isler, and Y. Y. Cetin. 2009. The virtual marathon: Parallel computing supports crowd simulations. IEEE Computer Graphics and Applications 29, 4, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  285. S. Young. 2007. Evaluation of pedestrian walking speeds in airport terminals. Transportation Research Record: Journal of the Transportation Research Board 1674, 20--26. Google ScholarGoogle ScholarCross RefCross Ref
  286. W. J. Yu, L. Chen, R. Dong, and S. Q. Dai. 2005. Centrifugal model for pedestrian dynamics. Physical Review E 72, 026112. Google ScholarGoogle ScholarCross RefCross Ref
  287. Y. F. Yu and W. G. Song. 2007. Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. Phys Rev E 75, 4, 046112.Google ScholarGoogle ScholarCross RefCross Ref
  288. S. J. Yuhaski and J. M. Smith. 1989. Modeling circulation systems in buildings using state dependent queueing models. Queueing Systems: Theory and Applications 4, 318--338.Google ScholarGoogle ScholarCross RefCross Ref
  289. Z. Zainuddin and M. Shuaib. 2010. Incorporating decision making capability into the social forces model in unidirectional flow. Research Journal of Applied Science 5, 388--393. Google ScholarGoogle ScholarCross RefCross Ref
  290. B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin, and L.-Q. Xu. 2008. Crowd analysis: A survey. Machine Vision and Applications 19, 5-6, 345--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  291. J. Zhang, D. Britto, M. Chraibi, R. Löhner, E. Haug, and B. Gawenat. 2014. Quantitative validation of PEDFLOW for description of unidirectional pedestrian dynamics. Transportation Research Procedia 2, 733--738.Google ScholarGoogle ScholarCross RefCross Ref
  292. J. Zhang, W. Kligsch, A. Schadschneider, and A. Seyfried. 2012. Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. Journal of Statistical Mechanics: Theory and Experiment 2012, 15, p02002. Google ScholarGoogle ScholarCross RefCross Ref
  293. J. Zhang, W. Klingsch, and A. Seyfried. 2010. High precision analysis of unidirectional pedestrian flow within the Hermes project. In Proceedings of the 5th Performance-Based Fire Protection and Fire Protection Engineering Seminars.Google ScholarGoogle Scholar
  294. X. Zheng, T. Zhong, and M. Liu. 2009. Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment 44, 437--445. Google ScholarGoogle ScholarCross RefCross Ref
  295. S. Zhou, D. Chen, W. Cai, L. Luo, M. Y. H. Low, and F. Tian. 2010. Crowd modeling and simulation technologies. ACM Transactions on Modeling and Computer Simulation 20, 4, 1--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  296. W. Zhu and H. Timmermans. 2007. Exploring pedestrian shopping decision processes—an application of gene expression programming. In Pedestrian and Evacuation Dynamics 2005. Springer, 145--154. Google ScholarGoogle ScholarCross RefCross Ref
  297. X. Zhu, Y. Bai, W. Yang, Y. Peng, and C. Bi. 2012. SAME: A students’ daily activity mobility model for campus delay-tolerant networks. In Proceedings of the Asia-Pacific Conference on Communications. 528--533.Google ScholarGoogle Scholar
  298. G. K. Zipf. 1949. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley.Google ScholarGoogle Scholar

Index Terms

  1. Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 50, Issue 5
          September 2018
          573 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3145473
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 September 2017
          • Revised: 1 June 2017
          • Accepted: 1 June 2017
          • Received: 1 August 2016
          Published in csur Volume 50, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader