skip to main content
research-article
Public Access

Antialiasing Complex Global Illumination Effects in Path-Space

Published:06 January 2017Publication History
Skip Abstract Section

Abstract

We present the first method to efficiently predict antialiasing footprints to pre-filter color-, normal-, and displacement-mapped appearance in the context of multi-bounce global illumination. We derive Fourier spectra for radiance and importance functions that allow us to compute spatial-angular filtering footprints at path vertices for both uni- and bi-directional path construction. We then use these footprints to antialias reflectance modulated by high-resolution maps (such as color and normal maps) encountered along a path. In doing so, we also unify the traditional path-space formulation of light transport with our frequency-space interpretation of global illumination pre-filtering. Our method is fully compatible with all existing single bounce pre-filtering appearance models, not restricted by path length, and easy to implement atop existing path-space renderers. We illustrate its effectiveness on several radiometrically complex scenarios where previous approaches either completely fail or require orders of magnitude more time to arrive at similarly high-quality results.

Skip Supplemental Material Section

Supplemental Material

tog-18.mp4

mp4

245.8 MB

References

  1. Laurent Belcour. 2012. Frequency Analysis of Light Transport: From Theory to Implementation. Ph.D. Dissertation. Grenoble Université.Google ScholarGoogle Scholar
  2. Laurent Belcour. 2016. Covariance Tracing source code. Retrieved March 2016 from https://github.com/belcour/CovarianceTracing.Google ScholarGoogle Scholar
  3. Laurent Belcour, Kavita Bala, and Cyril Soler. 2014. A local frequency analysis of light scattering and absorption. ACM Trans. Graph. 33, 5 (2014), 163:1--163:17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Laurent Belcour and Cyril Soler. 2011. Frequency-based kernel estimation for progressive photon mapping. In ACM SIGGRAPH Asia Posters. No. 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Frédo Durand. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32, 3 (2013), 31:1--31:18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carles Bosch, Xavier Pueyo, Stéphane Mérillou, and Djamchid Ghazanfarpour. 2004. A physically-based model for rendering realistic scratches. In Computer Graphics Forum, Vol. 23. 361--370. Google ScholarGoogle ScholarCross RefCross Ref
  7. Carles Bosch, Xavier Pueyo, Stéphane Mérillou, and Djamchid Ghazanfarpour. 2008. A resolution independent approach for the accurate rendering of grooved surfaces. In Computer Graphics Forum, Vol. 27. 1937--1944. Google ScholarGoogle ScholarCross RefCross Ref
  8. Eric Bruneton and Fabrice Neyret. 2012. A survey of non-linear pre-filtering methods for efficient and accurate surface shading. IEEE Transactions on Visualization and Computer Graphics 18, 2 (Feb. 2012), 242--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Min Chen and Jim Arvo. 2000. Theory and application of specular path perturbation. ACM Trans. Graph. 19, 1 (Oct. 2000), 246--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. 2009. GigaVoxels. In ACM Symposium on Interactive 3D Graphics and Games.Google ScholarGoogle Scholar
  11. Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor Ostromoukhov. 2013. Linear efficient antialiased displacement and reflectance mapping. ACM Trans. Graph. 32, 6 (Nov. 2013), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X. Sillion. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3 (2005), 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Oskar Elek, Pablo Bauszat, Tobias Ritschel, Marcus Magnor, and Hans-Peter Seidel. 2014. Progressive spectral ray differentials. In Proc. Vision, Modeling and Visualization. 151--158.Google ScholarGoogle Scholar
  14. Alain Fournier. 1992. Filtering Normal Maps and Creating Multiple Surfaces. Technical Report TR-92-41. Department of Computer Science, University of British Columbia, Vancouver, BC, Canada.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3 (2007), 28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Paul S. Heckbert. 1986. Survey of texture mapping. Comput. Graph. Appl. 6, 11 (1986), 56--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Paul S. Heckbert and Pat Hanrahan. 1984. Beam tracing polygonal objects. ACM SIGGRAPH Comput. Graph. 18, 3 (1984), 119--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Homan Igehy. 1999. Tracing ray differentials. In ACM SIGGRAPH 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Wenzel Jakob. 2010. Mitsuba renderer. Retrieved from http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  20. Wenzel Jakob, Miloš Hašan, Ling-qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Stephen Marschner. 2014. Discrete stochastic microfacet models. ACM Trans. Graph. 33, 4 (2014), 115:1--115:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. James T. Kajiya. 1986. The rendering equation. In ACM SIGGRAPH, Vol. 20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Anton S. Kaplanyan and Carsten Dachsbacher. 2013. Path space regularization for holistic and robust light transport. Comput. Graphi. Forum 32, 2 (2013), 63--72.Google ScholarGoogle ScholarCross RefCross Ref
  23. Jaroslav Kivánek and Mark Colbert. 2007. Real-time shading with filtered importance sampling. Comput. Graph. Forum 27, 4 (Jun 2007), 71.Google ScholarGoogle Scholar
  24. Eric P. Lafortune and Yves D. Willems. 1993. Bi-directional path tracing. In Proceedings of Compugraphics. 145--153.Google ScholarGoogle Scholar
  25. Fabrice Neyret. 1998. Modeling animating and rendering complex scenes using volumetric textures. IEEE Trans. Vis. Comput. Graph. 4, 1 (1998), 55--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Marc Olano and Dan Baker. 2010. LEAN mapping. In ACM I3D. 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Matt Pharr and Gerg Humphreys. 2010. Physically Based Rendering, 2nd ed. Morgan Kaufmann.Google ScholarGoogle Scholar
  28. Lars Schjøth, Jeppe Revall Frisvad, Kenny Erleben, and Jon Sporring. 2007. Photon differentials. In GRAPHITE. 179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mikio Shinya, Tokiichiro Takahashi, and Seiichiro Naito. 1987. Principles and applications of pencil tracing. ACM Comput. Graph. 21, 4 (Aug. 1987), 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Frank Suykens and Y. D. Willems. 2001. Path differentials and applications. In Eurographics Workshop on Rendering. 257--268. Google ScholarGoogle ScholarCross RefCross Ref
  31. Michael Toksvig. 2005. Mipmapping normal maps. Journal Graphics Tools 10, 3 (2005), 65--71. Google ScholarGoogle ScholarCross RefCross Ref
  32. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University.Google ScholarGoogle Scholar
  33. Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light transport. In Proceedings of Eurographics Rendering Workshop.Google ScholarGoogle Scholar
  34. Max Woodbury. 1950. Inverting Modified Matrices. Technical Report 42. Princeton University.Google ScholarGoogle Scholar
  35. Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-normal distributions for efficient rendering of specular microstructure. ACM Trans Graph. 35, 4 (2016), 56:1--56:9.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Antialiasing Complex Global Illumination Effects in Path-Space

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 36, Issue 1
        February 2017
        165 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2996392
        Issue’s Table of Contents

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 January 2017
        • Accepted: 1 October 2016
        • Revised: 1 August 2016
        • Received: 1 September 2015
        Published in tog Volume 36, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader