skip to main content
research-article

Connectivity-Based Space Filling Curve Construction Algorithms in High Genus 3D Surface WSNs

Authors Info & Claims
Published:12 August 2016Publication History
Skip Abstract Section

Abstract

Many applications in wireless sensor networks (WSNs) require that sensor observations in a given monitoring area are aggregated in a serial fashion. This demands a routing path to be constructed traversing all sensors in that area, which is also needed to linearize the network. In this article, we present SURF, a <u>S</u>pace filling c<u>UR</u>ve construction scheme for high genus three-dimensional (3D) sur<u>F</u>ace WSNs, yielding a traversal path provably aperiodic (that is, any node is covered at most a constant number of times). SURF first utilizes the hop-count distance function to construct the iso-contour in discrete settings, and then it uses the concept of the Reeb graph and the maximum cut set to divide the network into different regions. Finally, it conducts a novel serial traversal scheme, enabling the traversal within and between regions. To the best of our knowledge, SURF is the first high genus 3D surface WSN targeted and pure connectivity-based solution for linearizing the networks. It is fully distributed and highly scalable, requiring a nearly constant storage and communication cost per node in the network. To incorporate adaptive density of the constructed space filling curve, we also design a second algorithm, called SURF+, which makes use of parameterized spiral-like curves to cover the 3D surface and thus can yield a multiresolution SFC adapting to different requirements on travel budget or fusion delay. The application combining both algorithms for in-network data storage and retrieval in high genus 3D surface WSNs is also presented. Extensive simulations on several representative networks demonstrate that both algorithms work well on high genus 3D surface WSNs.

References

  1. M. R. Akhondi, A. Talevski, S. Carlsen, and S. Petersen. 2010. Applications of wireless sensor networks in the oil, gas and resources industries. In Proceedings of IEEE AINA. 941--948. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. M. Bahi, A. Makhoul, and A. Mostefaoui. 2008. Hilbert mobile beacon for localisation and coverage in sensor networks. Int. J. Syst. Sci. 39, 11 (2008), 1081--1094. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. X. Ban, M. Goswami, W. Zeng, X. Gu, and J. Gao. 2013. Topology dependent space filling curves for sensor networks and applications. In Proceedings of IEEE INFOCOM. 2166--2174.Google ScholarGoogle Scholar
  4. Suman Banerjee and Archan Misra. 2002. Minimum energy paths for reliable communication in multi-hop wireless networks. In Proceedings of ACM MobiHoc. 146--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Carr, J. Snoeyink, and M. van de Panne. 2004. Simplifying flexible isosurfaces using local geometric measures. In Proceedings of IEEE VIS. 497--504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y.-C. Chung, I. Su, and C. Lee. 2011. An efficient mechanism for processing similarity search queries in sensor networks. Inform. Sci. 181, 2 (2011), 284--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. 2003. Loops in reeb graphs of 2-manifolds. In Proceedings of ACM SoCG. 344--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Crossbow. 2003. MICA2 wireless measurement system datasheet.Google ScholarGoogle Scholar
  9. J. Erickson and S. Har-Peled. 2004. Optimally cutting a surface into a disk. Discr. Comput. Geom. 31, 1 (2004), 37--59.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Fischer and H. Gellersen. 2010. Location and navigation support for emergency responders: A survey. IEEE Perv. Comput. 9, 1 (2010), 38--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Funke and N. Milosavljevic. 2007. Network sketching or: ‘How much geometry hides in connectivity? -- part II’. In Proceedings of ACM-SIAM SODA. 958--967. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Gao and L. Zhang. 2006. Load-balanced short-path routing in wireless networks. IEEE Trans. Parallel Distrib. Syst. 17, 4 (2006), 377--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Gray, E. Abbena, and S. Salamon. 2006. Modern Differential Geometry of Curves and Surfaces with Mathematica (3rd ed.). Chapman & Hall/CRC, London. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Hatcher. 2002. Algebraic Topology. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  15. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. 2000. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of 33rd HICSS. 4--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hongbo Jiang, Shudong Jin, and Chonggang Wang. 2011. Prediction or not? an energy-efficient framework for clustering-based data collection in wireless sensor networks. IEEE Trans. Parallel. Distrib. Syst. 22, 6 (2011), 1064--1071. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Jiang, T. Yu, C. Tian, G. Tan, and C. Wang. 2015. Connectivity-based segmentation in large-scale 2-d/3-d sensor networks: Algorithm and applications. IEEE/ACM Trans. Network. 23, 1 (2015), 15--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Jin, J. Kim, F. Luo, and X. Gu. 2008. Discrete surface ricci flow. IEEE Trans. Vis. Comput. Graph. 14, 5 (2008), 1030--1043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. B. Johnson and D. A. Maltz. 1996. Dynamic Source Routing in Ad Hoc Wireless Networks. The Kluwer International Series in Engineering and Computer Science, Vol. 353. Kluwer Academic Publishers, Amsterdam, Chapter 5, 153--181.Google ScholarGoogle Scholar
  20. B. Karp and H. T. Kung. 2000. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of ACM MobiCom. 243--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Koutsonikolas, S. M. Das, and Y. C. Hu. 2007. Path planning of mobile landmarks for localization in wireless sensor networks. Comput. Commun. 30, 13 (2007), 2577--2592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Kuhn, R. Wattenhofer, and A. Zollinger. 2003. Worst-case optimal and average-case efficient geometric ad-hoc routing. In Proceedings of ACM MobiHoc. 267--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. S. Lam and Q. Chen. 2013. Geographic routing in d-dimensional spaces with guaranteed delivery and low stretch. IEEE/ACM Trans. Network. 21, 2 (2013), 663--677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Lederer, Y. Wang, and Jie. Gao. 2009. Connectivity-based localization of large-scale sensor networks with complex shape. ACM Trans. Sens. Network. 5, 4 (2009), 1--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. F. Li, J. Luo, S. Xin, W. Wang, and Y. He. 2012. LAACAD: Load balancing k-area coverage through autonomous deployment in wireless sensor networks. In Proceedings of IEEE ICDCS. 566--575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. F. Li, C. Zhang, J. Luo, S.-Q. Xin, and Y. He. 2014. LBDP: Localized boundary detection and parametrization for 3-D sensor networks. IEEE/ACM Trans. Network. 22, 2 (2014), 567--579. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Li and Y. Liu. 2009. Underground coal mine monitoring with wireless sensor networks. ACM Trans. Sens. Network. 5, 2 (2009), 10:1--10:29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. W. Liang, P. Schweitzer, and Z. Xu. 2013. Approximation algorithms for capacitated minimum forest problems in wireless sensor networks with a mobile sink. IEEE Trans. Comput. 62, 10 (2013), 1932--1944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C.-H. Lin, J.-J. Kuo, B.-H. Liu, and M.-J. Tsai. 2012. GPS-free, boundary-recognition-free, and reliable double-ruling-based information brokerage scheme in wireless sensor networks. IEEE Trans. Comput. 61, 6 (2012), 885--898. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Lin, G. Zhou, M. Al-Hami, K. Whitehouse, Y. Wu, J. A. Stankovic, T. He, X. Wu, and H. Liu. 2015. Toward stable network performance in wireless sensor networks: A multilevel perspective. ACM Trans. Sens. Network. 11, 3 (2015), 42:1--42:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. W. Liu, H. Jiang, Y. Yang, X. Liao, H. Lin, and Z. Jin. 2015. A unified framework for line-like skeleton extraction in 2D/3D sensor networks. IEEE Trans. Comput. 64, 5 (2015), 1323--1335.Google ScholarGoogle ScholarCross RefCross Ref
  32. Y. Liu, X. Mao, Y. He, K. Liu, W. Gong, and J. Wang. 2013. CitySee: Not only a wireless sensor network. IEEE Network 27, 5 (2013), 42--47.Google ScholarGoogle ScholarCross RefCross Ref
  33. J. Luo and Y. He. 2011. GeoQuorum: Load balancing and energy efficient data access in wireless sensor networks. In Proceedings of IEEE INFOCOM. 616--620.Google ScholarGoogle Scholar
  34. J. Luo, F. Li, and Y. He. 2011. 3DQS: Distributed data access in 3D wireless sensor networks. In Proceedings of IEEE ICC. 1--5.Google ScholarGoogle Scholar
  35. W. S. Massey. 1987. Algebraic Topology: An Introduction. Springer, New York.Google ScholarGoogle Scholar
  36. A. Mostefaoui, A. Boukerche, M. A. Merzoug, and M. Melkemi. 2015. A scalable approach for serial aata fusion in wireless sensor networks. Comput. Networks 79 (2015), 103--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. R. Munkres. 2000. Topology (2nd ed.). Prentice Hall, Upper Saddle River, NJ.Google ScholarGoogle Scholar
  38. A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas. 2007. Landmark selection and greedy landmark-descent routing for sensor networks. In Proceedings of IEEE INFOCOM. 661--669. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. V. Pascucci. 2011. Topological Methods in Data Analysis and Visualization. Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Patil, S. R. Das, and A. Nasipuri. 2004. Serial data fusion using space-filling curves in wireless sensor networks. In Proceedings of IEEE SECON. 182--190.Google ScholarGoogle Scholar
  41. G. Peano. 1890. Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36, 1 (1890), 157--160.Google ScholarGoogle ScholarCross RefCross Ref
  42. L. L. Peterson and B. S. Davie. 2011. Computer Networks: A Systems Approach (5th ed.). Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. G. J. Pottie and W. J. Kaiser. 2000. Wireless integrated network sensors. Commun. ACM 43, 5 (2000), 51--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu. 2003. Data-centric storage in sensornets with GHT, a geographic hash table. Mobile Network. Appl. 8, 4 (2003), 427--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. 2002. GHT: A geographic hash table for data-centric storage. In Proceedings of ACM International Workshop on Wireless Sensor Networks and Applications. 78--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. J. M. Reason and J. M. Rabaey. 2004. A study of energy consumption and reliability in a multi-hop sensor network. ACM SIGMOBILE Mobile Comput. Commun. Rev. 8, 1 (2004), 84--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. G. Reeb. 1946. Sur les points singuliers d’une forme de pfaff completement intgrable ou d’une fonction numrique. Compt. Rend. Acad. Sances, Paris 222 (1946), 847--849.Google ScholarGoogle Scholar
  48. H. Sagan. 1994. Space-filling Curves. Springer-Verlag, New York.Google ScholarGoogle Scholar
  49. R. Sarkar. 2014. Geometric Methods of Information Storage and Retrieval in Sensor Networks. Springer, Berlin, Chapter 14, 465--493.Google ScholarGoogle Scholar
  50. R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. 2009. Greedy routing with guaranteed delivery using ricci flows. In Proceedings of ACM/IEEE IPSN. 121--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. R. Sarkar, X. Zhu, and J. Gao. 2006. Double rulings for information brokerage in sensor networks. In Proceedings of ACM MobiCom. 286--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. R. Sarkar, X. Zhu, and J. Gao. 2009. Double rulings for information brokerage in sensor networks. IEEE/ACM Trans, Network, 17, 6 (2009), 1902--1915. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. R. Sarkar, X. Zhu, and J. Gao. 2013. Distributed and compact routing using spatial distributions in wireless sensor networks. ACM Trans, Sens, Network, 9, 3 (2013), 32:1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and Matt Welsh. 2004. Simulating the power consumption of large-scale sensor network applications. In Proceedings of 2nd ACM SenSys. 188--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. F. Spitzer. 2001. Principles of Random Walk. Springer, Berlin.Google ScholarGoogle Scholar
  56. R. Sugihara and R. K. Gupta. 2011. Path planning of data mules in sensor networks. ACM Trans. Sens. Network. 8, 1 (2011), 1:1--1:27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. G. Tan, S. A Jarvis, and A.-M. Kermarrec. 2009. Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks. IEEE Tran. Mobile Comput. 8, 6 (2009), 836--848. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. G. Tan, H. Jiang, J. Liu, and A.-M. Kermarrec. 2014. Convex partitioning of large-scale sensor networks in complex fields: Algorithms and applications. ACM Trans. Sens. Network. 10, 3 (2014), 41:1--41:23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. G. Tan, H. Jiang, S. Zhang, Z. Yin, and A.-M. Kermarrec. 2013. Connectivity-based and anchor-free localization in large-scale 2D/3D sensor networks. ACM Trans. Sens. Network. 10, 1 (2013), 6:1--6:21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Y.-J. Tang, J.-J. Kuo, and M.-J. Tsai. 2014. Double-ruling-based location-free data replication and retrieval scheme in mobile ad hoc networks. In Proceedings of IEEE ICCCN. 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  61. A. C. Viana, M. Dias de Amorim, Y. Viniotis, S. Fdida, and J. F. De Rezende. 2006. Twins: A dual addressing space representation for self-organizing networks. IEEE Trans. Parallel Distrib. Syst. 17, 12 (2006), 1468--1481. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. C. Wang and H. Jiang. 2015. SURF: A connectivity-based space filling curve construction algorithm in high genus 3D surface WSNs. In Proceedings of IEEE INFOCOM. 981--989.Google ScholarGoogle Scholar
  63. C. Wang, H. Jiang, T. Yu, and J. C. S. Lui. 2015. SLICE: Enabling greedy routing for large-scale 3D sensor networks with general topologies. IEEE/ACM Trans. Network. (2015), to appear.Google ScholarGoogle Scholar
  64. L. Xie, Y. Shi, Y. T. Hou, and H. D. Sherali. 2012. Making sensor networks immortal: An energy-renewal approach with wireless power transfer. IEEE/ACM Trans. Network. 20, 6 (2012), 1748--1761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. K. Yang. 2014. Wireless Sensor Networks. Springer, Berlin.Google ScholarGoogle Scholar
  66. Y. Yang, M. Jin, Y. Zhao, and H. Wu. 2013. Cut graph based information storage and retrieval in 3D sensor networks with general topology. In Proceedings of IEEE INFOCOM. 465--469.Google ScholarGoogle Scholar
  67. Y. Yang, M. Jin, Y. Zhao, and H. Wu. 2015. Distributed information storage and retrieval in 3-D sensor networks with general topologies. IEEE/ACM Trans. Network. 23, 4 (2015), 1149--1162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. T. Yu, H. Jiang, G. Tan, C. Wang, C. Tian, and Y. Wu. 2013. SINUS: A scalable and distributed routing algorithm with guaranteed delivery for WSNs on high genus 3D surfaces. In Proceedings of IEEE INFOCOM. 2175--2183.Google ScholarGoogle Scholar
  69. X. Yu, X. Yin, W. Han, J. Gao, and X. Gu. 2012. Scalable routing in 3D high genus sensor networks using graph embedding. In Proceedings of IEEE INFOCOM. 2681--2685.Google ScholarGoogle Scholar
  70. C. Zhang, J. Luo, L. Xiang, F. Li, J. Lin, and Y. He. 2012. Harmonic quorum systems: Data management in 2D/3D wireless sensor networks with holes. In Proceedings of IEEE SECON. 1--9.Google ScholarGoogle Scholar
  71. H. Zhang and H. Shen. 2009. Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Trans. Parallel. Distrib. Syst. 20, 10 (2009), 1526--1539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Y. Zhang and W. Li. 2012. Modeling and energy consumption evaluation of a stochastic wireless sensor network. EURASIP J. Wireless Commun. Network. 2012, 1 (2012), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  73. H. Zhou, H. Wu, S. Xia, M. Jin, and N. Ding. 2011. A distributed triangulation algorithm for wireless sensor networks on 2D and 3D surface. In Proceedings of IEEE INFOCOM. 1053--1061.Google ScholarGoogle Scholar

Index Terms

  1. Connectivity-Based Space Filling Curve Construction Algorithms in High Genus 3D Surface WSNs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Sensor Networks
      ACM Transactions on Sensor Networks  Volume 12, Issue 3
      August 2016
      304 pages
      ISSN:1550-4859
      EISSN:1550-4867
      DOI:10.1145/2976745
      • Editor:
      • Chenyang Lu
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 August 2016
      • Revised: 1 March 2016
      • Accepted: 1 March 2016
      • Received: 1 June 2015
      Published in tosn Volume 12, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader