skip to main content
research-article

Symbolic Trajectories

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

Due to the proliferation of GPS-enabled devices in vehicles or with people, large amounts of position data are recorded every day and the management of such mobility data, also called trajectories, is a very active research field. A lot of effort has gone into discovering “semantics” from the raw geometric trajectories by relating them to the spatial environment or finding patterns, for example, by data mining techniques. A question is how the resulting “meaningful” trajectories can be represented or further queried.

In this article, we propose a systematic study of annotated trajectory databases. We define a very simple generic model called symbolic trajectory to capture a wide range of meanings derived from a geometric trajectory. Essentially, a symbolic trajectory is just a time-dependent label; variants have sets of labels, places, or sets of places. They are modeled as abstract data types and integrated into a well-established framework of data types and operations for moving objects. Symbolic trajectories can represent, for example, the names of roads traversed obtained by map matching, transportation modes, speed profile, cells of a cellular network, behaviors of animals, cinemas within 2km distance, and so forth. Symbolic trajectories can be combined with geometric trajectories to obtain annotated trajectories.

Besides the model, the main technical contribution of the article is a language for pattern matching and rewriting of symbolic trajectories. A symbolic trajectory can be represented as a sequence of pairs (called units) consisting of a time interval and a label. A pattern consists of unit patterns (specifications for time interval and/or label) and wildcards, matching units and sequences of units, respectively, and regular expressions over such elements. It may further contain variables that can be used in conditions and in rewriting. Conditions and expressions in rewriting may use arbitrary operations available for querying in the host DBMS environment, which makes the language extensible and quite powerful.

We formally define the data model and syntax and semantics of the pattern language. Query operations are offered to integrate pattern matching, rewriting, and classification of symbolic trajectories into a DBMS querying environment. Implementation of the model using finite state machines is described in detail. An experimental evaluation demonstrates the efficiency of the implementation. In particular, it shows dramatic improvements in storage space and response time in a comparison of symbolic and geometric trajectories for some simple queries that can be executed on both symbolic and raw trajectories.

Skip Supplemental Material Section

Supplemental Material

References

  1. J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. 2008. Efficient pattern matching over event streams. In ACM SIGMOD. 147--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Ahas, E. Saluveer, M. Tiru, and S. Silm. 2008. Mobile positioning based tourism monitoring system: positium barometer. In ENTER, P. O’Connor, W. Höpken, and U. Gretzel (Eds.). Springer, 475--485.Google ScholarGoogle Scholar
  3. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd ed.). Addison-Wesley Longman Publishing Co., Boston, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Andrienko and G. Andrienko. 2013. Visual analytics of movement: An overview of methods, tools and procedures. Inf. Visualization 12, 1 (2013), 3--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Chen, M. T. Özsu, and V. Oria. 2005. Robust and fast similarity search for moving object trajectories. In SIGMOD Conference. 491--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. Cong, H. Lu, B. Chin Ooi, D. Zhang, and M. Zhang. 2012. Efficient spatial keyword search in trajectory databases. CoRR abs/1205.2880 (2012). http://arxiv.org/abs/1205.2880.Google ScholarGoogle Scholar
  7. M. L. Damiani, H. Issa, and F. Cagnacci. 2014a. Extracting stay regions with uncertain boundaries from GPS trajectories: A case study in animal ecology. In ACM SIGSPATIAL 2014, Vol. 22. 253--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. L. Damiani, H. Issa, R. H. Güting, and F. Valdés. 2014b. Hybrid queries over symbolic trajectories: A usage scenario. In MDM. 341--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. 2008. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proc. VLDB Endow. 1, 2 (2008), 1542--1552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. du Mouza and P. Rigaux. 2005. Mobility patterns. Geoinformatica 9, 4 (2005), 297--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Düntgen, T. Behr, and R. H. Güting. 2009. BerlinMOD: A benchmark for moving object databases. VLDB J. 18, 6 (2009), 1335--1368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Eagle and A. Pentland. 2006. Reality mining: Sensing complex social systems. Pers. Ubiquitous Comput. 10, 4 (2006), 255--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis. 1999. Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica 3, 3 (1999), 269--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. 1994. Fast subsequence matching in time-series databases. In Proc. of the ACM SIGMOD International Conference on Management of Data (SIGMOD’94). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider. 2000. A data model and data structures for moving objects databases. In SIGMOD Conference. 319--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. U. Frank. 1996. Qualitative spatial reasoning: Cardinal directions as an example. Int. J. Geog. Inf. Syst. 10, 3 (1996), 269--290.Google ScholarGoogle ScholarCross RefCross Ref
  17. L. Gao and X. S. Wang. 2009. Time series query. In Encyclopedia of Database Systems. 3114--3119.Google ScholarGoogle Scholar
  18. F. Giannotti and D. Pedreschi. 2008. Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. H. Güting. 2009. Moving objects databases and tracking. In Encyclopedia of Database Systems. 1770--1776.Google ScholarGoogle Scholar
  20. R. H. Güting, F. Valdés, and M. L. Damiani. 2013. Symbolic Trajectories. Technical Report. FernUniversität Hagen, Informatik-Report 369.Google ScholarGoogle Scholar
  21. R. H. Güting, T. Behr, and C. Düntgen. 2010. SECONDO: A platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull. 33, 2 (2010), 56--63.Google ScholarGoogle Scholar
  22. R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. 2000. A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25, 1 (2000), 1--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. H. Güting, V. T. de Almeida, and Z. Ding. 2006. Modeling and querying moving objects in networks. VLDB J. 15, 2 (2006), 165--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. H. Güting and M. Schneider. 2005. Moving Objects Databases. Morgan Kaufmann.Google ScholarGoogle Scholar
  25. M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras. 2005. Complex spatio-temporal pattern queries. In Proc. of the 31st International Conference on VLDB. Trondheim, Norway, 877--888. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. G. Kie, J. Matthiopoulos, J. Fieberg, R. A. Powell, F. Cagnacci, M. S. Mitchell, J.-M. Gaillard, and P. R. Moorcroft. 2010. The home-range concept: Are traditional estimators still relevant with modern telemetry technology? Philos. Trans. R. Soc. B 365, 1550 (2010), 2221--2231.Google ScholarGoogle ScholarCross RefCross Ref
  27. F. Korn, H. V. Jagadish, and C. Faloutsos. 1997. Efficiently supporting ad hoc queries in large datasets of time sequences. In Proc. of the ACM SIGMOD International Conference on Management of Data (SIGMOD’97). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Z. Li, J. Han, M. Ji, L.-A. Tang, Y. Yu, B. Ding, J.-G. Lee, and R. Kays. 2011. MoveMine: Mining moving object data for discovery of animal movement patterns. ACM Trans. Intell. Syst. Technol. 2, 4 (July 2011), 37:1--37:32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. L. Liao, D. Fox, and H. Kautz. 2005. Location-based activity recognition using relational Markov networks. In Proc. of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05). 773--778. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Liu, O. Wolfson, and H. Yin. 2006. Extracting semantic location from outdoor positioning systems. In Proc. of the 7th International Conference on Mobile Data Management. 73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Microsoft Geolife. 2015. http://research.microsoft.com/en-us/projects/geolife. (2015).Google ScholarGoogle Scholar
  32. P. Newson and J. Krumm. 2009. Hidden Markov map matching through noise and sparseness. In ACM SIGSPATIAL GIS. 336--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. L.-V. Nguyen-Dinh, W. G. Aref, and M. F. Mokbel. 2010. Spatio-temporal access methods: Part 2 (2003-2010). IEEE Data Eng. Bull. 33, 2 (2010), 46--55.Google ScholarGoogle Scholar
  34. A. T. Palma, V. Bogorny, B. Kuijpers, and L. Otávio Alvares. 2008. A clustering-based approach for discovering interesting places in trajectories. In SAC. 863--868. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. 2008. HERMES: Aggregative LBS via a trajectory DB engine. In SIGMOD Conference. 1255--1258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. N. Pelekis and Y. Theodoridis. 2014. Mobility Data Management and Exploration. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. D. Pfoser, C. S. Jensen, and Y. Theodoridis. 2000. Novel approaches in query processing for moving object trajectories. In VLDB. 395--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. A. Quddus, W. Y. Ochieng, and R. B. Noland. 2007. Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transp. Res. Part C: Emerging Technol. 15, 5 (2007), 312--328.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Reddy, M. Y. Mun, J. Burke, D. Estrin, M. H. Hansen, and M. B. Srivastava. 2010. Using mobile phones to determine transportation modes. TOSN 6, 2 (2010), 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. C. Renso, S. Spaccapietra, and E. Zimányi. 2013. Mobility Data -- Modeling, Management, and Understanding. Cambridge Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. A. M. R. Rocha, V. C. Times, G. Oliveira, L. O. Alvares, and V. Bogorny. 2010. DB-SMoT: A direction-based spatio-temporal clustering method. In IEEE Conf. of Intelligent Systems. 114--119.Google ScholarGoogle Scholar
  42. R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. 2004. Expressing and optimizing sequence queries in database systems. ACM Trans. Database Syst. 29, 2 (2004), 282--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. A. Sakr and R. H. Güting. 2011. Spatiotemporal pattern queries. GeoInformatica 15, 3 (2011), 497--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. 2008. A conceptual view on trajectories. Data Knowl. Eng. 65, 1 (April 2008), 126--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Spaccapietra, C. Parent, C. Renso, G. Andrienko, N. Andrienko, V. Bogorny, M. L. Damiani, A. Gkoulalas-Divanis, J. Macedo, N. Pelekis, Y. Theodoridis, and Z. Yan. 2013. Semantic trajectories modeling and analysis. Comput. Surveys 45(4) (2013), 42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. L. Speicys, C. S. Jensen, and A. Kligys. 2003. Computational data modeling for network-constrained moving objects. In ACM SIGSPATIAL GIS. 118--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. 2011. Transportation mode detection using mobile phones and GIS information. In ACM SIGSPATIAL GIS. 54--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. 2004. Managing uncertainty in moving objects databases. ACM Trans. Database Syst. 29, 3 (2004), 463--507. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. F. Urbano, F. Cagnacci, C. Calenge, H. Dettki, A. Cameron, and M. Neteler. 2010. Wildlife tracking data management: A new vision. Philos. Trans. R. Soc. B 365, 1550 (2010), 2177--2185.Google ScholarGoogle ScholarCross RefCross Ref
  50. F. Valdés, M. L. Damiani, and R. H. Güting. 2013. Symbolic trajectories in SECONDO: Pattern matching and rewriting. In Database Systems for Advanced Applications. 450--453.Google ScholarGoogle Scholar
  51. F. Valdés and R. H. Güting. 2014. Index-supported pattern matching on symbolic trajectories. In Proc. of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Dallas/Fort Worth, TX, November 4--7, 2014. 53--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. R. Vieira, P. Bakalov, and V. J. Tsotras. 2010. Querying trajectories using flexible patterns. In Proc. of the 13th Int. Conf. on Extending Database Technology (EDBT’10). 406--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. R. Vieira, P. Bakalov, and V. J. Tsotras. 2011. FlexTrack: A system for querying flexible patterns in trajectory databases. In 12th International Symposium, SSTD. 475--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. W. Wu, Y. Wang, J. Bartolo Gomes, D. T. Anh, J. Decraene, S. Antonatos, M. Xue, P. Yang, G.-E. Yap, X. Li, S. Krishnaswamy, and A. Shi-Nash. 2014. Oscillation resolution for mobile phone cellular tower data to enable mobility modelling. In MDM. 321--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Z. Yan and D. Chakraborty. 2014. Semantics in Mobile Sensing. Morgan & Claypool. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. 2011. SeMiTri: A framework for semantic annotation of heterogeneous trajectories.. In EDBT 2011. 259--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. 2013. Semantic trajectories: Mobility data computation and annotation. ACM Trans. Intell. Syst. Technol. 4, 3 (2013), 49:1--49:38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. C. Zhang, J. Han, L. Shou, J. Lu, and T. F. La Porta. 2014. Splitter: Mining fine-grained sequential patterns in semantic trajectories. PVLDB 7, 9 (2014), 769--780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. 2013. Towards efficient search for activity trajectories. In Proc. of the 2013 IEEE International Conference on Data Engineering (ICDE’13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. 2010a. Understanding transportation modes based on GPS data for web applications. ACM Trans. Web 4, 1 (January 2010), 1:1--1:36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Y. Zheng, X. Xie, and W.-Y. Ma. 2010b. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 2 (2010), 32--39.Google ScholarGoogle Scholar
  62. Y. Zheng and X. Zhou. 2011. Computing with Spatial Trajectories. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Symbolic Trajectories

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Spatial Algorithms and Systems
          ACM Transactions on Spatial Algorithms and Systems  Volume 1, Issue 2
          November 2015
          144 pages
          ISSN:2374-0353
          EISSN:2374-0361
          DOI:10.1145/2808193
          • Editor:
          • Hanan Samet
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2015
          • Accepted: 1 May 2015
          • Revised: 1 March 2015
          • Received: 1 August 2014
          Published in tsas Volume 1, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader