skip to main content
research-article

Micron-scale light transport decomposition using interferometry

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We present a computational imaging system, inspired by the optical coherence tomography (OCT) framework, that uses interferometry to produce decompositions of light transport in small scenes or volumes. The system decomposes transport according to various attributes of the paths that photons travel through the scene, including where on the source the paths originate, their pathlengths from source to camera through the scene, their wavelength, and their polarization. Since it uses interference, the system can achieve high pathlength resolutions, with the ability to distinguish paths whose lengths differ by as little as ten microns. We describe how to construct and optimize an optical assembly for this technique, and we build a prototype to measure and visualize three-dimensional shape, direct and indirect reflection components, and properties of scattering, refractive/dispersive, and birefringent materials.

Skip Supplemental Material Section

Supplemental Material

a37.mp4

mp4

17.7 MB

References

  1. Abramson, N. 1983. Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena. Applied Optics 22, 2 (Jan), 215--232.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bai, J., Chandraker, M., Ng, T.-T., and Ramamoorthi, R. 2010. A Dual Theory of Inverse and Forward Light Transport. In Proceedings of the 11th European Conference on Computer Vision, ECCV'10, 294--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cossairt, O., Matsuda, N., and Gupta, M. 2014. Digital refocusing with incoherent holography. In Computational Photography (ICCP), 2014 IEEE International Conference on, 1--9.Google ScholarGoogle Scholar
  4. Dorrington, A. A., Godbaz, J. P., Cree, M. J., Payne, A. D., and Streeter, L. V. 2011. Separating true range measurements from multi-path and scattering interference in commercial range cameras. In Proc. SPIE, vol. 7864.Google ScholarGoogle Scholar
  5. Goodman, J. W. 1968. Introduction to Fourier Optics. McGraw-Hill Book Company.Google ScholarGoogle Scholar
  6. Goodman, J. W. 2000. Statistical Optics. Wiley Classics Library.Google ScholarGoogle Scholar
  7. Gupta, M. and Agrawal, A. and Veeraraghavan, A. and Narasimhan, S. G. 2011. Structured light 3d scanning in the presence of global illumination. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 713--720. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hariharan, P. 2003. Optical interferometry. Elsevier.Google ScholarGoogle Scholar
  9. Heide, F., Hullin, M. B., Gregson, J., and Heidrich, W. 2013. Low-budget Transient Imaging Using Photonic Mixer Devices. ACM Trans. Graph. 32, 4 (July), 45:1--45:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Heide, F., Xiao, L., Kolb, A., Hullin, M. B., and Heidrich, W. 2014. Imaging in scattering media using correlation image sensors and sparse convolutional coding. Optics Express 22, 21 (Oct), 26338--26350.Google ScholarGoogle ScholarCross RefCross Ref
  11. Huang, D., Swanson, E., Lin, C., Schuman, J., Stinson, W., Chang, W., Hee, M., Flotte, T., Gregory, K., Puliafito, C., and Fujimoto, G. 1991. Optical coherence tomography. Science 254, 5035, 1178--1181.Google ScholarGoogle Scholar
  12. Jarabo, A., Marco, J., Muñoz, A., Buisan, R., Jarosz, W., and Gutierrez, D. 2014. A Framework for Transient Rendering. ACM Trans. Graph. 33, 6 (Nov.), 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kadambi, A., Whyte, R., Bhandari, A., Streeter, L., Barsi, C., Dorrington, A., and Raskar, R. 2013. Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles. ACM Trans. Graph. 32, 6 (Nov.), 167:1--167:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, W., Matusik, W., and Zickler, T. 2013. Fabricating BRDFs at High Spatial Resolution Using Wave Optics. ACM Trans. Graph. 32, 4 (July), 144:1--144:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Luan, X. 2001. Experimental investigation of photonic mixer device and development of TOF 3D ranging systems based on PMD technology. PhD thesis, University of Siegen.Google ScholarGoogle Scholar
  16. Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination. ACM Trans. Graph. 25, 3 (July), 935--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency Shadows Using Non-linear Wavelet Lighting Approximation. ACM Trans. Graph. 22, 3 (July), 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. O'Toole, M., and Kutulakos, K. N. 2010. Optical Computing for Fast Light Transport Analysis. ACM Trans. Graph. 29, 6 (Dec.), 164:1--164:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. O'Toole, M., Raskar, R., and Kutulakos, K. N. 2012. Primal-dual Coding to Probe Light Transport. ACM Trans. Graph. 31, 4 (July), 39:1--39:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O'Toole, M., Mather, J., and Kutulakos, K. 2014. 3D Shape and Indirect Appearance by Structured Light Transport. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, 3246--3253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. O'Toole, M., Heide, F., Xiao, L., Hullin, M. B., Heidrich, W., and Kutulakos, K. N. 2014. Temporal Frequency Probing for 5D Transient Analysis of Global Light Transport. ACM Trans. Graph. 33, 4 (July), 87:1--87:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Peers, P., Mahajan, D. K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., and Debevec, P. 2009. Compressive Light Transport Sensing. ACM Trans. Graph. 28, 1 (Feb.), 3:1--3:18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Reddy, D., Ramamoorthi, R., and Curless, B. 2012. Frequency-space Decomposition and Acquisition of Light Transport Under Spatially Varying Illumination. In Proceedings of the 12th European Conference on Computer Vision, ECCV'12, 596--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Schwarte, R., Heinol, H.-G., Xu, Z., and Hartmann, K. 1995. New active 3D vision system based on rf-modulation interferometry of incoherent light. In Proc. SPIE, vol. 2588.Google ScholarGoogle Scholar
  25. Sen, P., Chen, B., Garg, G., Marschner, S. R., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual Photography. ACM Trans. Graph. 24, 3 (July), 745--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Velten, A., Wu, D., Jarabo, A., Masia, B., Barsi, C., Joshi, C., Lawson, E., Bawendi, M., Gutierrez, D., and Raskar, R. 2013. Femto-photography: Capturing and Visualizing the Propagation of Light. ACM Trans. Graph. 32, 4 (July), 44:1--44:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, J., Dong, Y., Tong, X., Lin, Z., and Guo, B. 2009. Kernel Nyström Method for Light Transport. ACM Trans. Graph. 28, 3 (July), 29:1--29:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wu, D., Velten, A., OToole, M., Masia, B., Agrawal, A., Dai, Q., and Raskar, R. 2014. Decomposing Global Light Transport Using Time of Flight Imaging. International Journal of Computer Vision 107, 2, 123--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wu, D., Wetzstein, G., Barsi, C., Willwacher, T., Dai, Q., and Raskar, R. 2014. Ultra-fast Lensless Computational Imaging through 5D Frequency Analysis of Time-resolved Light Transport. International Journal of Computer Vision 110, 2, 128--140. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Micron-scale light transport decomposition using interferometry

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 4
      August 2015
      1307 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2809654
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2015
      Published in tog Volume 34, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader