skip to main content
research-article

Computational interlocking furniture assembly

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

Furniture typically consists of assemblies of elongated and planar parts that are connected together by glue, nails, hinges, screws, or other means that do not encourage disassembly and re-assembly. An alternative approach is to use an interlocking mechanism, where the component parts tightly interlock with one another. The challenge in designing such a network of interlocking joints is that local analysis is insufficient to guarantee global interlocking, and there is a huge number of joint combinations that require an enormous exploration effort to ensure global interlocking. In this paper, we present a computational solution to support the design of a network of interlocking joints that form a globally-interlocking furniture assembly. The key idea is to break the furniture complex into an overlapping set of small groups, where the parts in each group are immobilized by a local key, and adjacent groups are further locked with dependencies. The dependency among the groups saves the effort of exploring the immobilization of every subset of parts in the assembly, thus allowing the intensive interlocking computation to be localized within each small group. We demonstrate the effectiveness of our technique on many globally-interlocking furniture assemblies of various shapes and complexity.

Skip Supplemental Material Section

Supplemental Material

a91.mp4

mp4

26.1 MB

References

  1. Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1. Article 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Cutler, W. H. 1978. The six-piece burr. Journal of Recreational Mathematics 10, 4, 241--250.Google ScholarGoogle Scholar
  3. Cutler, W. H., 1994. A computer analysis of all 6-piece burrs. Self published.Google ScholarGoogle Scholar
  4. de Goes, F., Alliez, P., Owhadi, H., and Desbrun, M. 2013. On the equilibrium of simplicial masonry structures. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P., Sorkine-Hornung, O., and Pauly, M. 2014. Assembling self-supporting structures. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6. Article 214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Graubner, W. 1992. Encyclo. of Wood Joints. Taunton Press.Google ScholarGoogle Scholar
  7. Gustafsson, S. I. 1995. Furniture design by use of the finite element method. Holz als Roh- und Werkstoff 53, 4, 257--260.Google ScholarGoogle Scholar
  8. Hao, J., Fang, L., and Williams, R. E. 2011. An efficient curvature-based partitioning of large-scale stl models. Rapid Prototyping Journal 17, 2, 116--127.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hildebrand, K., Bickel, B., and Alexa, M. 2013. Orthogonal slicing for additive manufacturing. Computers & Graphics (SMI) 37, 6, 669--675. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hu, R., Li, H., Zhang, H., and Cohen-Or, D. 2014. Approximate pyramidal shape decomposition. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6. Article 213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jones, D., 2014. Interlocking chair. http://www.offi.com/products/offikids/PAS-CHAIR.php?p2c=679.Google ScholarGoogle Scholar
  12. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6. Article 217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. (SIGGRAPH) 30, 4. Article 85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Laurajaxs, 2014. Interlocking furniture. http://laurajaxs.hubpages.com/hub/interlocking-furniture.Google ScholarGoogle Scholar
  15. Li, W., Agrawala, M., Curless, B., and Salesin, D. 2008. Automated generation of interactive 3D exploded view diagrams. ACM Trans. Graph. (SIGGRAPH) 27, 3. Article 101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liu, Y., Hao, P., Snyder, J., Wang, W., and Guo, B. 2013. Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6. Article 129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Medellín, H., Lim, T., Corney, J., Ritchie, J. M., and Davies, J. B. C. 2007. Automatic subdivision and refinement of large components for rapid prototyping production. Journal of Comp. and Info. Science in Eng. 7, 3, 249--258.Google ScholarGoogle ScholarCross RefCross Ref
  19. Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Postell, J. 2012. Furniture Design. Wiley, 2nd edition.Google ScholarGoogle Scholar
  21. Röver, A., 2011. Burr tools. burrtools.sourceforge.net.Google ScholarGoogle Scholar
  22. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. SketchChair: An all-in-one chair design system for end users. In TEI, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-Amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. (SIGGRAPH) 33, 4. Article 62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Computer Graphics Forum (Eurographics) 32, 2, 317--326.Google ScholarGoogle ScholarCross RefCross Ref
  25. Smardzewski, J. 1998. Numerical analysis of furniture constructions. Wood Science and Technology 32, 4, 273--286.Google ScholarGoogle ScholarCross RefCross Ref
  26. Song, P., Fu, C.-W., and Cohen-Or, D. 2012. Recursive interlocking puzzles. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6. Article 128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Song*, P., Fu*, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 94. (* joint first authors). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tang, C., Sun, X., Gomes, A., Wallner, J., and Pottmann, H. 2014. Form-finding with polyhedral meshes made simple. ACM Trans. Graph. (SIGGRAPH) 33, 4. Article 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. (SIGGRAPH) 31, 4. Article 86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vanek, J., Galicia, J. A. G., Benes, B., Měch, R., Carr, N., Stava, O., and Miller, G. S. 2014. PackMerger: A 3D print volume optimizer. Computer Graphics Forum 33, 6, 322--332.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. (SIGGRAPH) 31, 4, Article 87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xin, S.-Q., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3D models. ACM Trans. Graph. (SIGGRAPH) 30, 4. Article 97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. 2014. Boxelization: Folding 3D objects into boxes. ACM Trans. Graph. (SIGGRAPH) 33, 4. Article 71. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational interlocking furniture assembly

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader