skip to main content
tutorial

Assessing the Structural Complexity of Computer and Communication Networks

Published:26 May 2015Publication History
Skip Abstract Section

Abstract

In this tutorial, 17 structural complexity indices are presented and compared, each representing one of the following categories: adjacency- and distance-based metrics, Shannon entropy-based metrics, product measures, subgraph-based metrics, and path- and walk-based metrics. The applicability of these indices to computer and communication networks is evaluated with the aid of different elementary, specifically designed, random, and real network topologies. On the grounds of the evaluation study, advantages and disadvantages of particular metrics are identified. In addition, their general properties and runtimes are assessed, and a general view on the structural network complexity is presented.

References

  1. R. Albert and A.-L. Barabási. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74, 1, 47--97. DOI:http://dx.doi.org/10.1103/RevModPhys.74.47Google ScholarGoogle ScholarCross RefCross Ref
  2. D. Babić, D. J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić. 2002. Resistance-distance matrix: A computational algorithm and its application. International Journal of Quantum Chemistry 90, 1, 166--176. DOI:http://dx.doi.org/10.1002/qua.10057Google ScholarGoogle ScholarCross RefCross Ref
  3. A.-L. Barabási and R. Albert. 1999. Emergence of scaling in random networks. Science 286, 5439, 509--512. DOI:http://dx.doi.org/10.1126/science.286.5439.509Google ScholarGoogle Scholar
  4. A. Bavelas. 1950. Communication patterns in task-oriented groups. Journal of the Acoustical Society of America 22, 6, 725--730. DOI:http://dx.doi.org/10.1121/1.1906679Google ScholarGoogle ScholarCross RefCross Ref
  5. S. H. Bertz. 1981. The first general index of molecular complexity. Journal of the American Chemical Society 103, 12, 3599--3601. DOI:http://dx.doi.org/10.1021/ja00402a071Google ScholarGoogle ScholarCross RefCross Ref
  6. B. Bollobás. 1998. Modern Graph Theory. Graduate Texts in Mathematics, Vol. 184. Springer, New York, NY. DOI:http://dx.doi.org/10.1007/978-1-4612-0619-4Google ScholarGoogle Scholar
  7. D. Bonchev and G. A. Buck. 2005. Quantitative measures of network complexity. In Complexity in Chemistry, Biology, and Ecology, D. Bonchev and D. H. Rouvray (Eds.). Springer, New York, NY, 191--235. DOI:http://dx.doi.org/10.1007/0-387-25871-X_5Google ScholarGoogle Scholar
  8. J. R. Bunch and J. E. Hopcroft. 1974. Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation 28, 125, 231--236.Google ScholarGoogle Scholar
  9. G. Caldarelli. 2013. Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  10. J. C. Claussen. 2008. Offdiagonal complexity: A computationally quick network complexity measure--application to protein networks and cell division. In A. Deutsch, R. B. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, and H. Metz (Eds.), Mathematical Modeling of Biological Systems, Volume II, Birkhäuser, Boston, MA, 279--287. DOI:http://dx.doi.org/10.1007/978-0-8176-4556-4_25Google ScholarGoogle Scholar
  11. D. M. Cvetković, M. Doob, and H. Sachs. 1998. Spectra of Graphs: Theory and Applications (3rd revised and enlarged ed.). Wiley-VCH, Weinheim, Germany.Google ScholarGoogle Scholar
  12. M. Dehmer and F. Emmert-Streib. 2013. Advances in Network Complexity. Wiley-VCH Verlag GmbH & Co. KGaA. DOI:http://dx.doi.org/10.1002/9783527670468Google ScholarGoogle Scholar
  13. Encyclopædia Britannica. 2014. Chemical compound. (2014). Retrieved April 21, 2015 from http://www.britannica.com/EBchecked/topic/108614/chemical-compound/278310/Functional-groups.Google ScholarGoogle Scholar
  14. P. Erdős and A. Rényi. 1959. On random graphs I. Publlicationes Mathematicae Debrecen 6, 290--297.Google ScholarGoogle Scholar
  15. G. H. Golub and C. F. Van Loan. 1996. Matrix Computations (3rd ed.). Johns Hopkins University Press, Baltimore, MD. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. L. Gross and J. Yellen. 2003. Discrete mathematics and its applications. In Handbook of Graph Theory (1st ed.). CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  17. I. Gutman, C. Rücker, and G. Rücker. 2001. On walks in molecular graphs. Journal of Chemical Information and Computer Sciences 41, 3, 739--745. DOI:http://dx.doi.org/10.1021/ci000149uGoogle ScholarGoogle ScholarCross RefCross Ref
  18. A. Kamisiński, P. Chołda, and A. Jajszczyk. 2015. Online Appendix. (Jan. 2015). Retrieved April 12, 2015 from http://kt.agh.edu.pl/∼kamisinski/pub/2015_csur_complexity/.Google ScholarGoogle Scholar
  19. V. Karyotis, E. Stai, and S. Papavassiliou. 2013. Evolutionary Dynamics of Complex Communications Networks. CRC Press, Boca Raton, FL. DOI:http://dx.doi.org/10.1201/b15505 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Kim and T. Wilhelm. 2008. What is a complex graph? Physica A: Statistical Mechanics and its Applications 387, 11, 2637--2652. DOI:http://dx.doi.org/10.1016/j.physa.2008.01.015Google ScholarGoogle Scholar
  21. V. Latora and M. Marchiori. 2003. Economic small-world behavior in weighted networks. The European Physical Journal B—Condensed Matter and Complex Systems 32, 2, 249--263. DOI:http://dx.doi.org/10.1140/epjb/e2003-00095-5Google ScholarGoogle Scholar
  22. F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC’14). ACM, New York, NY, 296--303. DOI:http://dx.doi.org/10.1145/2608628.2608664 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. I. Lukovits, A. Miličević, S. Nikolić, and N. Trinajstić. 2002. On walk counts and complexity of general graphs. Internet Electronic Journal of Molecular Design 1, 8. 388--400. http://www.biochempress.com/av01_0388.html.Google ScholarGoogle Scholar
  24. E. A. Moore, B. T. Sutcliffe, A. H. Pakiari, T. E. Simos, S. Wilson, M. Springborg, D. Pugh, R. A. Lewis, N. Trinajstić, and K. Travis. 2004. Chemical Modelling. SPR—Chemical Modelling, Vol. 3. The Royal Society of Chemistry. DOI:http://dx.doi.org/10.1039/9781847553331Google ScholarGoogle Scholar
  25. H. L. Morgan. 1965. The generation of a unique machine description for chemical structures—a technique developed at chemical abstracts service. Journal of Chemical Documentation 5, 2, 107--113. DOI:http://dx.doi.org/10.1021/c160017a018Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Mowshowitz. 1968. Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bulletin of Mathematical Biophysics 30, 1, 175--204. DOI:http://dx.doi.org/10.1007/BF02476948Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Mowshowitz and M. Dehmer. 2010. A symmetry index for graphs. Symmetry: Culture and Science 21, 4, 321--327.Google ScholarGoogle Scholar
  28. S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. 2010. SNDlib 1.0—survivable network design library. Networks 55, 3, 276--286. DOI:http://dx.doi.org/10.1002/net.v55:3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Raychaudhury, S. K. Ray, J. J. Ghosh, A. B. Roy, and S. C. Basak. 1984. Discrimination of isomeric structures using information theoretic topological indices. Journal of Computational Chemistry 5, 6, 581--588. DOI:http://dx.doi.org/10.1002/jcc.540050612Google ScholarGoogle ScholarCross RefCross Ref
  30. M. Razinger. 1982. Extended connectivity in chemical graphs. Theoretica chimica acta 61, 6, 581--586. DOI:http://dx.doi.org/10.1007/BF00552670Google ScholarGoogle Scholar
  31. G. Rücker and C. Rücker. 1993. Counts of all walks as atomic and molecular descriptors. Journal of Chemical Information and Computer Sciences 33, 5, 683--695. DOI:http://dx.doi.org/10.1021/ci00015a005Google ScholarGoogle Scholar
  32. R. Seidel. 1995. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences 51, 3, 400--403. DOI:http://dx.doi.org/10.1006/jcss.1995.1078 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. J. Watts and S. H. Strogatz. 1998. Collective dynamics of “small-world” networks. Nature 393, 6684, 440--442. DOI:http://dx.doi.org/10.1038/30918Google ScholarGoogle Scholar
  34. D. B. West. 2000. Introduction to Graph Theory (2nd ed.). Prentice Hall, Upper Saddle River, NJ.Google ScholarGoogle Scholar
  35. T. Wilhelm. 2003. An elementary dynamic model for non-binary food webs. Ecological Modelling 168, 1--2, 145--152. DOI:http://dx.doi.org/10.1016/S0304-3800(03)00207-2Google ScholarGoogle ScholarCross RefCross Ref
  36. T. Wilhelm and J. Hollunder. 2007. Information theoretic description of networks. Physica A: Statistical Mechanics and Its Applications 385, 1, 385--396. DOI:http://dx.doi.org/10.1016/j.physa.2007.06.029Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Assessing the Structural Complexity of Computer and Communication Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 47, Issue 4
      July 2015
      573 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/2775083
      • Editor:
      • Sartaj Sahni
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 May 2015
      • Accepted: 1 April 2015
      • Revised: 1 January 2015
      • Received: 1 April 2014
      Published in csur Volume 47, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader