skip to main content
research-article

3D Artifacts Similarity Based on the Concurrent Evaluation of Heterogeneous Properties

Authors Info & Claims
Published:14 August 2015Publication History
Skip Abstract Section

Abstract

Archaeological artifacts are often classified in homogeneous groups, according to either intangible properties (e.g., origin, use, age) or physical features (e.g., color, material, geometric shape, size, style). In particular, a single property is usually not enough to characterize artifacts’ peculiar traits, as most of the objects are affected by degradation or only partially preserved. In this article, we propose a shape analysis and comparison pipeline specifically targeted to the similarity assessment of real-world 3D artifacts. The proposed methodology is able to concurrently evaluate heterogeneous properties, such as geometric (e.g., curvature, size, roundness, or mass distribution) and photometric (e.g., texture, color distribution, or reflectance) aspects. The geometric description is based on a statistical technique to select properties that are mutually independent; the photometric information is handled according to a topological perspective and complemented by the analysis of color distribution. The outcome is a mixed description of each 3D artifact, which is used to derive a similarity measure between objects. The potential of our approach is high because any property representable as real- or vector- valued functions can be easily added in our framework. Experimental results carried on an existing collection of textured triangle meshes are exhibited to show the potentiality of the method in retrieval and classification tasks.

References

  1. David Arnold. 2014a. Computer graphics and cultural heritage: From one-way inspiration to symbiosis, part I. IEEE Computer Graphics and Applicaitons 34, 3, 76--86.Google ScholarGoogle ScholarCross RefCross Ref
  2. David Arnold. 2014b. Computer graphics and cultural heritage, part 2: Continuing inspiration for future tools. IEEE Computer Graphics and Applications 34, 4, 70--79.Google ScholarGoogle ScholarCross RefCross Ref
  3. Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. Addison Wesley Longman Boston, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Vincent Barra and Silvia Biasotti. 2013. Learning kernels on extended Reeb graphs for 3D shape classification and retrieval. In Proceedings of the Eurographics Workshop on 3D Object Retrieval. 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Vincent Barra and Silvia Biasotti. 2014. 3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs. Visual Computer 30, 11, 1247--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Silvia Biasotti, Andrea Cerri, Mostafa Abdelrahman, Masaki Aono, Abdessamad Ben Hamza, Moumen El-Melegy, Aly Farag, Valeria Garro, Andrea Giachetti, Daniela Giorgi, Afzal Godil, Chunyuan Li, Yong-Jin Liu, Hero Y. Martono, Chika Sanada, Atsushi Tatsuma, Santiago Velasco-Forero, and Chun-Xiao Xu. 2014a. SHREC’14 track: Retrieval and classification on textured 3D models. In Proceedings of the Eurographics Workshop on 3D Object Retrieval. 111--120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Silvia Biasotti, Andrea Cerri, Bianca Falcidieno, and Michela Spagnuolo. 2014b. Similarity assessment for the analysis of 3d artefacts. In Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage. 155--164.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Silvia Biasotti, Andrea Cerri, Daniela Giorgi, and Michaela Spagnuolo. 2013a. PHOG: Photometric and geometric functions for textured shape retrieval. Computer Graphics Forum 32, 5, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Silvia Biasotti, Michela Spagnuolo, and Bianca Falcidieno. 2013b. Grouping real functions defined on 3D surfaces. Computers and Graphics 37, 6, 608--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2006. Efficient computation of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing 28, 5, 1812--1836. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Andrea Cerri, Silvia Biasotti, Mostafa Abdelrahman, Jesús Angulo, Kai Berger, Louis Chevallier, Moumen T. El-Melegy, Aly A. Farag, Frederic Lefebvre, Andrea Giachetti, Hassane Guermoud, Yong-Jin Liu, Santiago Velasco-Forero, Jean-Ronan Vigouroux, Chun-Xiao Xu, and Jun-Bin Zhang. 2013. SHREC’13 track: Retrieval on textured 3D models. In Eurographics Workshop on 3D Object Retrieval. 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Andrea Cerri and Claudia Landi. 2013. The persistence space in multidimensional persistent homology. In Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, Vol. 7749. Springer, 180--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Andrea Cerri and Claudia Landi. 2015. Hausdorff stability of persistence spaces. Foundations of Computational Mathematics, 1--25. DOI:http://dx.doi.org/10.1007/s10208-015-9244-1Google ScholarGoogle Scholar
  14. David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. 2007. Stability of persistence diagrams. Discrete and Computational Geometry 37, 1, 103--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guido M. Cortelazzo and Nicola Orio. 2006. Retrieval of colored 3D models. In Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission. 986--993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 886--893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Michele d’Amico, PatrizioFrosini, and Claudia Landi. 2010. Natural pseudo-distance and optimal matching between reduced size functions. Acta Applicandae Mathematicae 109, 2, 527--554.Google ScholarGoogle ScholarCross RefCross Ref
  18. Michel Marie Deza and Elena Deza. 2009. Encyclopedia of Distances. Springer, Berlin.Google ScholarGoogle Scholar
  19. Herbert Edelsbrunner and John Harer. 2010. Computational Topology: An Introduction. American Mathematical Society.Google ScholarGoogle Scholar
  20. Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. 2002. Topological persistence and simplification. Discrete and Computational Geometry 28, 4, 511--533. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mark D. Fairchild. 2005. Color Appearance Models (2nd ed.). Wiley-IS&T, Chichester, UK.Google ScholarGoogle Scholar
  22. Theo Gevers and Arnold W. M. Smeulders. 2000. PicToSeek: Combining color and shape invariant features for image retrieval. IEEE Transactions on Image Processing 9, 1, 102--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. IST. 2008. FP6 Network of Excellence: AIM@SHAPE. No. 506766. Retrieved June 20, 2015, from http://www.aimatshape.net.Google ScholarGoogle Scholar
  24. IST. 2010. FP7 Coordination Action: FOCUS K3D. No. 214993. Retrieved June 20, 2015, from http://www.focusk3d.eu/.Google ScholarGoogle Scholar
  25. IST. 2012. FP7 Integrating Project: 3DCOFORM. No. 231809. Retrieved June 20, 2015, from http://www.3d-coform.eu/.Google ScholarGoogle Scholar
  26. IST. 2015. FP7 Network of Excellence: V-MUST. No. 270404. Retrieved June 20, 2015, from http://www.v-must.net.Google ScholarGoogle Scholar
  27. Asako Kanezaki, Tatsuya Harada, and Yasuo Kuniyoshi. 2010. Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features. Visual Computer 26, 10, 1269--1281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. 2003. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. 156--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ron Kimmel, Ravi Malladi, and Nir Sochen. 2000. Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. International Journal of Computer Vision 39, 2, 111--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Anestis Koutsoudis and Christodoulos Chamzas. 2011. 3D pottery shape matching using depth map images. Journal of Cultural Heritage 12, 2, 128--133.Google ScholarGoogle ScholarCross RefCross Ref
  31. Anestis Koutsoudis, George Pavlidis, Vassiliki Liami, Despoina Tsiafakis, and Christodoulos Chamzas. 2010. 3D pottery content-based retrieval based on pose normalisation and segmentation. Journal of Cultural Heritage 11, 3, 329--338.Google ScholarGoogle ScholarCross RefCross Ref
  32. Artiom Kovnatsky, Michael M. Bronstein, Alexander M. Bronstein, and Ron Kimmel. 2012a. Photometric heat kernel signatures. In Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, Vol. 6667. Springer, 616--627. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Artiom Kovnatsky, Michael M. Bronstein, Alexander M. Bronstein, Dan Raviv, and Ron Kimmel. 2012b. Affine-invariant photometric heat kernel signatures. In Proceedings of the Eurographics Workshop on 3D Object Retrieval. 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Artiom Kovnatsky, Dan Raviv, Michael M. Bronstein, Alexander M. Bronstein, and Ron Kimmel. 2013. Geometric and photometric data fusion in non-rigid shape analysis. Numerical Mathematics: Theory, Methods & Applications 6, 1, 199--222.Google ScholarGoogle ScholarCross RefCross Ref
  35. Haibin Ling and David W. Jacobs. 2005. Deformation invariant image matching. In Proceedings of the IEEE International Conference on Computer Vision, Vol. 2. 1466--1473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yong-Jin Liu, Yi-Fu Zheng, Lu Lv, Yu-Ming Xuan, and Xiao-Lan Fu. 2012. 3D model retrieval based on color + geometry signatures. Visual Computer 28, 1, 75--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. David G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. International Journal on Computer Vision 60, 2, 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Elisabeth Niggemann, Jacques de Decker, and Maurice Lévy. 2011. The New Renaissance. Report of the “Comit des Sages” Reflection group on bringing Europe’s Cultural Heritage.Google ScholarGoogle Scholar
  39. Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. 2002. Shape distributions. ACM Transactions on Graphics 21, 4, 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Giuliano Pasqualotto, Pietro Zanuttigh, and Guido M. Cortelazzo. 2013. Combining color and shape descriptors for 3D model retrieval. Signal Process-Image 28, 6, 608--623.Google ScholarGoogle ScholarCross RefCross Ref
  41. Massimiliano Pavan and Marcello Pelillo. 2007. Dominant sets and pairwise clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1, 167--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2006. Laplace-Beltrami spectra as “Shape-DNA” of surfaces and solids. Computer-Aided Design 38, 4, 342--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Conrado R. Ruiz, Rafael Cabredo, Levi J. Monteverde, and Zhiyong Huang. 2009. Combining shape and color for retrieval of 3D models. In Proceedings of the 5th International Joint Conference on INC, IMS, and IDC (NCM’09). 1295--1300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Pedro Santos, Martin Ritz, Reimar Tausch, Hendrik Schmedt, Rafael Monroy, Antonio De Stefano, Oliver Posniak, Constanze Fuhrmann, and Dieter W. Fellner. 2014. CultLab3D: On the verge of 3D mass digitization. In Proceedings of the Eurographics Workshop on 3D Object Retrieval. 65--73.Google ScholarGoogle Scholar
  45. Christopher Schwartz, Michael Weinmann, Roland Ruiters, and Reinhard Klein. 2011. Integrated high-quality acquisition of geometry and appearance for cultural heritage. In Proceedings of the International Symposium on Virtual Reality, Archeology, and Cultural Heritage. 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Konstantinos Sfikas, Ioannis Pratikakis, Anestis Koutsoudis, Michalis Savelonas, and Theoharis Theoharis. 2014. Partial matching of 3D cultural heritage objects using panoramic views. Multimedia Tools and Applications, 1--15. DOI:http://dx.doi.org/10.1007/s11042-014-2069-0Google ScholarGoogle Scholar
  47. Jean-Luc Starck and Adrian Hilton. 2007. Correspondence labelling for wide-timeframe free-form surface matching. In Proceedings of the IEEE International Conference on Computer Vision. 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  48. Motofumi T. Suzuki. 2001. A Web-based retrieval system for 3D polygonal models. In Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vol. 4. 2271--2276.Google ScholarGoogle ScholarCross RefCross Ref
  49. Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2011. A combined texture-shape descriptor for enhanced 3D feature matching. In Proceedings of the IEEE International Conference on Image Processing. 809--812.Google ScholarGoogle ScholarCross RefCross Ref
  50. Jargen W. Weibull. 1995. Evolutionary Game Theory. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  51. Changchang Wu, Brian Clipp, Xiaowei Li, Jan-Michael Frahm, and Marc Pollefeys. 2008. 3D model matching with viewpoint-invariant patches (VIP). In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--8.Google ScholarGoogle Scholar
  52. Andrei Zaharescu, Edmond Boyer, and Radu Horaud. 2012. Keypoints and local descriptors of scalar functions on 2D manifolds. International Journal of Computer Vision 100, 1, 78--98. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. 3D Artifacts Similarity Based on the Concurrent Evaluation of Heterogeneous Properties

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Journal on Computing and Cultural Heritage
            Journal on Computing and Cultural Heritage   Volume 8, Issue 4
            August 2015
            102 pages
            ISSN:1556-4673
            EISSN:1556-4711
            DOI:10.1145/2815168
            Issue’s Table of Contents

            Copyright © 2015 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 14 August 2015
            • Accepted: 1 March 2015
            • Revised: 1 February 2015
            • Received: 1 December 2014
            Published in jocch Volume 8, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader