skip to main content
survey

Text and Data Mining Techniques in Adverse Drug Reaction Detection

Published:11 May 2015Publication History
Skip Abstract Section

Abstract

We review data mining and related computer science techniques that have been studied in the area of drug safety to identify signals of adverse drug reactions from different data sources, such as spontaneous reporting databases, electronic health records, and medical literature. Development of such techniques has become more crucial for public heath, especially with the growth of data repositories that include either reports of adverse drug reactions, which require fast processing for discovering signals of adverse reactions, or data sources that may contain such signals but require data or text mining techniques to discover them. In order to highlight the importance of contributions made by computer scientists in this area so far, we categorize and review the existing approaches, and most importantly, we identify areas where more research should be undertaken.

Skip Supplemental Material Section

Supplemental Material

References

  1. Australian Commission on Safety and Quality in Health Care (ACSQHC). 2011. National Safety and Quality Health Service Standards. Sydney.Google ScholarGoogle Scholar
  2. A. Agresti. 2007. An Introduction to Categorical Data Analysis. Vol. 423. John Wiley & Sons.Google ScholarGoogle Scholar
  3. A. Alghabban. 2004. Dictionary of Pharmacovigilance. Pharmaceutical Press.Google ScholarGoogle Scholar
  4. N. Anderson and J. Borlak. 2011. Correlation versus causation? Pharmacovigilance of the analgesic flupirtine exemplifies the need for refined spontaneous ADR reporting. PloS One 6, 10 (2011), e25221.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. R. Aronson. 2001. Effective mapping of biomedical text to the UMLS metathesaurus: The MetaMap program. In AMIA Annual Symposium Proceedings. 17--21.Google ScholarGoogle Scholar
  6. N. Atias and R. Sharan. 2011. An algorithmic framework for predicting side effects of drugs. Journal of Computational Biology 18, 3 (2011), 207--218.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Avillach, J.-C. Dufour, G. Diallo, F. Salvo, M. Joubert, F. Thiessard, F. Mougin, G. Trifirò, A. Fourrier-Réglat, and A. Pariente. 2013. Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: A contribution from the EU--ADR project. Journal of the American Medical Informatics Association 20, 3 (2013), 446--452.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Baggs, J. Gee, E. Lewis, G. Fowler, P. Benson, T. Lieu, A. Naleway, N. P. Klein, R. Baxter, and E. Belongia. 2011. The vaccine safety datalink: A model for monitoring immunization safety. Pediatrics 127, Supplement 1 (2011), S45--S53.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Bate, M. Lindquist, I. R. Edwards, S. Olsson, R. Orre, A. Lansner, and R. M. De Freitas. 1998. A Bayesian neural network method for adverse drug reaction signal generation. European Journal of Clinical Pharmacology 54, 4 (1998), 315--321.Google ScholarGoogle ScholarCross RefCross Ref
  10. A. Bate, M. Lindquist, I. R. Edwards, and R. Orre. 2002. A data mining approach for signal detection and analysis. Drug Safety 25, 6 (2002), 393--397.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. W. Bates, R. S. Evans, H. Murff, P. D. Stetson, L. Pizziferri, and G. Hripcsak. 2003. Detecting adverse events using information technology. Journal of the American Medical Informatics Association 10, 2 (2003), 115--128.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Benton, L. Ungar, S. Hill, S. Hennessy, J. Mao, A. Chung, C. E. Leonard, and J. H. Holmes. 2011. Identifying potential adverse effects using the web: A new approach to medical hypothesis generation. Journal of Biomedical Informatics 44, 6 (2011), 989--996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Bian, U. Topaloglu, and F. Yu. 2012. Towards large-scale twitter mining for drug-related adverse events. In 2012 International Workshop on Smart Health and Wellbeing. 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Biriell and I. R. Edwards. 1997. Reasons for reporting adverse drug reactions -- some thoughts based on an international review. Pharmacoepidemiology and Drug Safety 6, 1 (1997), 21--26.Google ScholarGoogle ScholarCross RefCross Ref
  15. C. Bizer, T. Heath, and T. Berners-Lee. 2009. Linked data -- the story so far. International Journal on Semantic Web and Information Systems 5, 3 (2009), 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  16. O. Bodenreider. 2004. The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Research 32, Supplement 1 (2004), D267--D270.Google ScholarGoogle ScholarCross RefCross Ref
  17. O. Bodenreider. 2009. Using SNOMED CT in combination with MedDRA for reporting signal detection and adverse drug reactions reporting. In AMIA Annual Symposium Proceedings. 45--49.Google ScholarGoogle Scholar
  18. C. L. Burgess, C. D. Holman, and A. G. Satti. 2005. Adverse drug reactions in older australians, 1981--2002. Medical Journal of Australia 182, 6 (2005), 267--270.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Cable. 2009. Adverse events of statins - an informal internet-based study. Journal of Independent Medical Research 7, 1 (2009), 24 pages.Google ScholarGoogle Scholar
  20. S. Chaudhuri, V. Ganti, and R. Kaushik. 2006. A primitive operator for similarity joins in data cleaning. In 22nd International Conference on Data Engineering. 5--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. W. Chee, R. Berlin, and B. Schatz. 2011. Predicting adverse drug events from personal health messages. In AMIA Annual Symposium Proceedings. 217--226.Google ScholarGoogle Scholar
  22. E. S. Chen, G. Hripcsak, H. Xu, M. Markatou, and C. Friedman. 2008. Automated acquisition of disease--drug knowledge from biomedical and clinical documents: An initial study. Journal of the American Medical Informatics Association 15, 1 (2008), 87--98.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Chen, H. He, J. Li, H. Jin, D. McAullay, G. Williams, R. Sparks, and C. Kelman. 2005. Representing association classification rules mined from health data. In 9th International Conference on Knowledge-Based Intelligent Information and Engineering Systems. 1225--1231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Chen, H. Jin, H. He, D. Mcaullay, C. M. O’Keefe, R. Sparks, and C. Kelman. 2010. Mining consequence events in temporal health data. Intelligent Data Analysis - Knowledge Discovery in Bioinformatics 14, 2 (2010), 245--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Christen. 2008. Automatic record linkage using seeded nearest neighbour and support vector machine classification. In 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 151--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Christen. 2012. A survey of indexing techniques for scalable record linkage and deduplication. IEEE Transactions on Knowledge and Data Engineering 24, 9 (2012), 1537--1555. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. CIOMS. 2010. Practical Aspects of Signal Detection in Pharmacovigilance. (2010).Google ScholarGoogle Scholar
  28. D. C. Classen, S. L. Pestotnik, R. S. Evans, and J. P. Burke. 1991. Computerized surveillance of adverse drug events in hospital patients. Journal of the American Medical Association 266, 20 (1991), 2847--2851.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. C. Classen, S. L. Pestotnik, R. S. Evans, and J. P. Burke. 1992. Description of a computerized adverse drug event monitor using a hospital information system. Hospital Pharmacy 27, 9 (1992), 776--779.Google ScholarGoogle Scholar
  30. D. C. Classen, S. L. Pestotnik, R. S. Evans, J. F. Lloyd, and J. P. Burke. 1997. Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA 277, 4 (1997), 301--306.Google ScholarGoogle ScholarCross RefCross Ref
  31. N. Colineau and C. Paris. 2010. Talking about your health to strangers: Understanding the use of online social networks by patients. New Review of Hypermedia and Multimedia 16, 1--2 (2010), 141--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. P. M. Coloma, M. J. Schuemie, G. Trifiró, R. Gini, R. Herings, J. Hippisley-Cox, G. Mazzaglia, C. Giaquinto, G. Corrao, L. Pedersen, J. van der Lei, and M. Sturkenboom. 2011. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiology Drug Safety 20, 1 (2011), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  33. P. M. Coloma, G. Trifiró, V. Patadia, and M. Sturkenboom. 2013. Postmarketing safety surveillance. Drug Safety 36, 3 (2013), 183--197.Google ScholarGoogle ScholarCross RefCross Ref
  34. T. M. Cover and P. E. Hart. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 1 (1967), 21--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. L. H. Curtis, M. G. Weiner, D. M. Boudreau, W. O. Cooper, G. W. Daniel, V. P. Nair, M. A. Raebel, N. U. Beaulieu, R. Rosofsky, and T. S. Woodworth. 2012. Design considerations, architecture, and use of the mini-sentinel distributed data system. Pharmacoepidemiology and Drug Safety 21, S1 (2012), 23--31.Google ScholarGoogle ScholarCross RefCross Ref
  36. C. M. Cusack. 2008. Electronic health records and electronic prescribing: Promise and pitfalls. Obstetrics and Gynecology Clinics of North America 35, 1 (2008), 63--79.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Doan, N. Collier, H. Xu, P. H. Duy, and T. M. Phuong. 2012. Recognition of medication information from discharge summaries using ensembles of classifiers. BMC Medical Informatics and Decision Making 12, 36 (2012), 10 pages.Google ScholarGoogle Scholar
  38. W. DuMouchel. 1999. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. American Statistician 53, 3 (1999), 177--190.Google ScholarGoogle Scholar
  39. W. DuMouchel and D. Pregibon. 2001. Empirical Bayes screening for multi-item associations. In 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. I. R. Edwards and J. K. Aronson. 2000. Adverse drug reactions: Definitions, diagnosis, and management. The Lancet 356, 9237 (2000), 1255--1259.Google ScholarGoogle Scholar
  41. J. P. Ehsani, T. Jackson, and S. J. Duckett. 2006. The incidence and cost of adverse events in victorian hospitals 2003-04. Medical Journal of Australia 184, 11 (2006), 551--555.Google ScholarGoogle ScholarCross RefCross Ref
  42. M. G. Elfeky, V. S. Verykios, and A. K. Elmagarmid. 2002. TAILOR: A record linkage toolbox. In 18th International Conference on Data Engineering. 17--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. EMA. 2012. The European Medicines Agency Guidelines on Good Pharmacovigilance Practices (GVP). Technical Report EMA/827661/2011. The European Medicines Agency.Google ScholarGoogle Scholar
  44. S. J. W. Evans, P. C. Waller, and S. Davis. 2001. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiology and Drug Safety 10, 6 (2001), 483--486.Google ScholarGoogle ScholarCross RefCross Ref
  45. FDA. 2014. FAERS Reporting by Healthcare Providers and Consumers by Year. Retrieved from http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm070456.htm.Google ScholarGoogle Scholar
  46. T. R. Fleming and D. P. Harrington. 1992. Counting processes and survival analysis. Statistics in Medicine 11, 13 (1992), 1792--1793.Google ScholarGoogle Scholar
  47. S. Fox and S. Jones. 2009. The Social Life Of Health Information. Technical Report. Pew Internet & American Life Project (2009).Google ScholarGoogle Scholar
  48. D. M. Fram, J. S. Almenoff, and W. DuMouchel. 2003. Empirical Bayesian data mining for discovering patterns in post-marketing drug safety. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 359--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. C. Friedman. 2009. Discovering novel adverse drug events using natural language processing and mining of the electronic health record. In 12th Conference on Artificial Intelligence in Medicine: Artificial Intelligence in Medicine. 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. C. D. Furberg, A. A. Levin, P. A. Gross, R. S. Shapiro, and B. L. Strom. 2006. The FDA and drug safety: A proposal for sweeping changes. JAMA Internal Medicine 166, 18 (2006), 1938--1942.Google ScholarGoogle Scholar
  51. H. Gonzalez, A. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, and W. Shen. 2010. Google fusion tables: Data management, integration and collaboration in the cloud. In 1st ACM Symposium on Cloud Computing. 175--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Gordon. 2008. Improving post-approval risk surveillance for drugs: Active post-market risk identification. Michigan Telecommunications and Technology Law Review 15, 297 (2008), 297--314.Google ScholarGoogle Scholar
  53. H. Gurulingappa, J. Fluck, M. Hofmann-Apitius, and L. Toldo. 2011. Identification of adverse drug event assertive sentences in medical case reports. In 1st International Workshop on Knowledge Discovery and Health Care Management. 16--27.Google ScholarGoogle Scholar
  54. H. Gurulingappa, A. M. Rajput, A. Roberts, J. Fluck, M. Hofmann-Apitius, and L. Toldo. 2012. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. Journal of Biomedical Informatics 45, 5 (2012), 885--892. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. A. Y. Halevy, A. Rajaraman, and J. J. Ordille. 2006. Data integration: The teenage years. In 32nd International Conference on Very Large Data Bases. Seoul, Korea, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. R. W. Hamming. 1950. Error detecting and error correcting codes. Bell System Technical Journal 29, 2 (1950), 147--160.Google ScholarGoogle ScholarCross RefCross Ref
  57. T. J. Hannan. 1999. Detecting adverse drug reactions to improve patient outcomes. International Journal of Medical Informatics 55, 1 (1999), 61--64.Google ScholarGoogle ScholarCross RefCross Ref
  58. R. Harpaz, S. Vilar, W. DuMouchel, H. Salmasian, K. Haerian, N. H. Shah, H. S. Chase, and C. Friedman. 2013. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. Journal of the American Medical Informatics Association 20, 3 (2013), 413--419.Google ScholarGoogle ScholarCross RefCross Ref
  59. C. Hawn. 2009. Take two aspirin and tweet me in the morning: How Twitter, Facebook, and other social media are reshaping health care. Health Affairs 28, 2 (2009), 361--368.Google ScholarGoogle ScholarCross RefCross Ref
  60. L. Hazell and S. A. Shakir. 2006. Under-reporting of adverse drug reactions: A systematic review. Drug Safety 29, 5 (2006), 385--396.Google ScholarGoogle ScholarCross RefCross Ref
  61. H. He, G. J. Williams, J. Chen, S. Hawkins, and C. Kelman. 2004. Exploring possible adverse drug reactions by clustering event sequences. In Data Warehousing and Knowledge Discovery. 199--208.Google ScholarGoogle Scholar
  62. A. B. Hill. 1965. The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58, 5 (1965), 295--300.Google ScholarGoogle Scholar
  63. B. Honigman, J. Lee, J. Rothschild, P. Light, R. M. Pulling, T. Yu, and D. W. Bates. 2001. Using computerized data to identify adverse drug events in outpatients. Journal of the American Medical Informatics Association 8, 3 (2001), 254--266.Google ScholarGoogle ScholarCross RefCross Ref
  64. B. L. Hug, C. Keohane, D. L. Seger, C. Yoon, and D. W. Bates. 2012. The costs of adverse drug events in community hospitals. Joint Commission Journal on Quality and Patient Safety 38, 3 (2012), 120--126.Google ScholarGoogle ScholarCross RefCross Ref
  65. R. K. Hulse, S. J. Clark, J. C. Jackson, H. R Warner, and R. M. Gardner. 1976. Computerized medication monitoring system. American Journal of Hospital Pharmacy 33, 10 (1976), 1061--1064.Google ScholarGoogle Scholar
  66. S. H. Hwang, S. Lee, H. K. Koo, and Y. Kim. 2008. Evaluation of a computer-based adverse-drug-event monitor. American Journal of Health-System Pharmacy 65, 23 (2008), 2265--2272.Google ScholarGoogle ScholarCross RefCross Ref
  67. ICH Working Group. 1996. ICH harmonised tripartite guideline: Guideline for good clinical practice E6 (R1). In International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Vol. 10.Google ScholarGoogle Scholar
  68. International Organization for Standardization (ISO). 2005. Health Informatics -- Electronic Health Record -- Definition, Scope and Context. Technical Report ISO/TR 20514.Google ScholarGoogle Scholar
  69. A. K. Jha, G. J. Kuperman, J. M. Teich, L. Leape, B. Shea, E. Rittenberg, E. Burdick, D. L. Seger, M. Vander Vliet, and D. W. Bates. 1998. Identifying adverse drug events: Development of a computer-based monitor and comparison with chart review and stimulated voluntary report. Journal of the American Medical Informatics Association 5, 3 (1998), 305--314.Google ScholarGoogle ScholarCross RefCross Ref
  70. Y. Ji, R. M. Massanari, J. Ager, J. Yen, R. E. Miller, and H. Ying. 2007. A fuzzy logic-based computational recognition-primed decision model. Information Sciences 177, 20 (2007), 4338--4353. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Y. Ji, H. Ying, P. Dews, A. Mansour, J. Tran, R. E. Miller, and R. M. Massanari. 2011. A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Transactions on Information Technology in Biomedicine 15, 3 (2011), 428--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Y. Ji, H. Ying, J. Tran, P. Dews, A. Mansour, and R. M. Massanari. 2013. A method for mining infrequent causal associations and its application in finding adverse drug reaction signal pairs. IEEE Transactions on Knowledge and Data Engineering 25, 4 (2013), 721--733. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. H. Jin, J. Chen, H. He, C. Kelman, D. McAullay, and C. M. O’Keefe. 2010. Signaling potential adverse drug reactions from administrative health databases. IEEE Transactions on Knowledge and Data Engineering 22, 6 (2010), 839--853. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. H. Jin, J. Chen, H. He, G. J. Williams, C. Kelman, and C. M. O’Keefe. 2008. Mining unexpected temporal associations: Applications in detecting adverse drug reactions. IEEE Transactions on Information Technology in Biomedicine 12, 4 (2008), 488--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. H. Jin, J. Chen, C. Kelman, H. He, D. McAullay, and C. M. O’Keefe. 2006. Mining unexpected associations for signalling potential adverse drug reactions from administrative health databases. In 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. 867--876. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. S. Karimi, S. N. Kim, and L. Cavedon. 2011. Drug side-effects: What do patient forums reveal? In 2nd International Workshop On Web Science and Information Exchange in the Medical Web. 14--15.Google ScholarGoogle Scholar
  77. M. Kay. 1986. Algorithm schemata and data structures in syntactic processing. In Readings in Natural Language Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA. 35--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. C. W. Kelman, S. Pearson, R. O. Day, C. D. J. Holman, E. V. Kliewer, and D. A. Henry. 2007. Evaluating medicines: Let’s use all the evidence. Medical Journal of Australia 186, 5 (2007), 249--252.Google ScholarGoogle ScholarCross RefCross Ref
  79. D. M. Kirking, J. W. Thomas, F. J. Ascione, and E. L. Boyd. 1986. Detecting and preventing adverse drug interactions: The potential contribution of computers in pharmacies. Social Science and Medicine 22, 1 (1986), 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  80. J. Koch-Weser, E. M. Sellers, and R. Zacest. 1977. The ambiguity of adverse drug reactions. European Journal of Clinical Pharmacology 11, 2 (1977), 75--78.Google ScholarGoogle ScholarCross RefCross Ref
  81. M. Kuhn, M. Campillos, I. Letunic, L. J. Jensen, and P. Bork. 2010. A side effect resource to capture phenotypic effects of drugs. Molecular Systems Biology 6, 1 (2010), Article 343.Google ScholarGoogle Scholar
  82. R. Leaman, L. Wojtulewicz, R. Sullivan, A. Skariah, J. Yang, and G. Gonzalez. 2010. Towards internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks. In Proceedings of the Workshop on Biomedical Natural Language Processing. Uppsala, Sweden, 117--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. M. Lenzerini. 2002. Data integration: A theoretical perspective. In 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 233--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. P. LePendu, S. V. Iyer, A. Bauer-Mehren, R. Harpaz, J. M. Mortensen, T. Podchiyska, T. A. Ferris, and N. H. Shah. 2013. Pharmacovigilance using clinical notes. Clinical Pharmacology and Therapeutics 93, 6 (2013), 547--555.Google ScholarGoogle ScholarCross RefCross Ref
  85. V. I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions and reversals. In Soviet Physics Doklady, Vol. 10. 707--710.Google ScholarGoogle Scholar
  86. M. A. Levin, M. Krol, A. M. Doshi, and D. L. Reich. 2007. Extraction and mapping of drug names from free text to a standardized nomenclature. In AMIA Annual Symposium Proceedings. 438--442.Google ScholarGoogle Scholar
  87. A. Y. Levy. 2000. Logic-based techniques in data integration. In Logic-Based Artificial Intelligence, Kluwer International Series in Engineering and Computer Science, Vol. 597. Kluwer Academic Publishers, Norwell, MA. 575--595. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. J. Li, H. Shen, and R. Topor. 2001. Mining optimal class association rule set. In Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. 364--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. M. Lindquist. 2008. VigiBase, the WHO Global ICSR database system: Basic facts. Drug Information Journal 42, 5 (2008), 409--419.Google ScholarGoogle ScholarCross RefCross Ref
  90. M. Lindquist, M. Ståhl, A. Bate, I. R. Edwards, and R. Meyboom. 2000. A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database. Drug Safety 23, 6 (2000), 533--542.Google ScholarGoogle ScholarCross RefCross Ref
  91. J. Liu, A. Li, and S. Seneff. 2011. Automatic drug side effect discovery from online patient-submitted reviews: Focus on statin drugs. In International Conference on Advances in Information Mining and Management. 91--96.Google ScholarGoogle Scholar
  92. M. Liu, E. R. McPeek Hinz, M. E. Matheny, J. C. Denny, J. S. Schildcrout, R. A. Miller, and H. Xu. 2013. Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records. Journal of the American Medical Informatics Association 20, 3 (2013), 420--426.Google ScholarGoogle ScholarCross RefCross Ref
  93. X. Liu and H. Chen. 2013. AZDrugMiner: An information extraction system for mining patient-reported adverse drug events in online patient forums. In International Conference on Smart Health. 134--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. J. J. Mao, A. Chung, A. Benton, S. Hill, L. Ungar, C. E. Leonard, S. Hennessy, and J. H Holmes. 2013. Online discussion of drug side effects and discontinuation among breast cancer survivors. Pharmacoepidemiology and Drug Safety 22, 3 (2013), 256--262.Google ScholarGoogle ScholarCross RefCross Ref
  95. A. T. McCray, S. Srinivasan, and A. C. Browne. 1994. Lexical methods for managing variation in biomedical terminologies. In The Annual Symposium on Computer Application in Medical Care. 235--239.Google ScholarGoogle Scholar
  96. T. L. McDonald, W. P. Erickson, and L. L. McDonald. 2000. Analysis of count data from before-after control-impact studies. Journal of Agricultural, Biological, and Environmental Statistics 5, 3 (2000), 262--279.Google ScholarGoogle ScholarCross RefCross Ref
  97. C. A. Naranjo, U. Busto, E. M. Sellers, P. Sandor, I. Ruiz, E. A. Roberts, E. Janecek, C. Domecq, and D. J. Greenblatt. 1981. A method for estimating the probability of adverse drug reactions. Clinical Pharmacology and Therapeutics 30 (1981), 239--245.Google ScholarGoogle ScholarCross RefCross Ref
  98. J. Nelson, A. Cook, and O. Yu. 2009. Evaluation of Signal Detection Methods for Use in Prospective Post-licensure Medical Product Safety Surveillance. Technical Report. FDA Sentinel Initiative Safety Signal Identification Contract.Google ScholarGoogle Scholar
  99. J. N. Nkanza and W. Walop. 2004. Vaccine associated adverse event surveillance (VAAES) and quality assurance. Drug Safety 27, 12 (2004), 951--952.Google ScholarGoogle Scholar
  100. G. N. Norén, J. Hopstadius, A. Bate, K. Star, and I. R. Edwards. 2010. Temporal pattern discovery in longitudinal electronic patient records. Data Mining and Knowledge Discovery 20, 3 (2010), 361--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. G. N. Norén, R. Orre, and A. Bate. 2005. A hit-miss model for duplicate detection in the WHO drug safety database. In 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. 459--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. G. N. Norén, R. Orre, A. Bate, and I. R. Edwards. 2007. Duplicate detection in adverse drug reaction surveillance. Data Mining and Knowledge Discovery 14, 3 (2007), 305--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. S. Olsson, S. Pal, A. Stergachis, and M. Couper. 2010. Pharmacovigilance activities in 55 low- and middle-income countries. Drug Safety 33, 8 (2010), 689--703.Google ScholarGoogle ScholarCross RefCross Ref
  104. S. N. Pal, C. Duncombe, D. Falzon, and S. Olsson. 2013. WHO strategy for collecting safety data in public health programmes: Complementing spontaneous reporting systems. Drug Safety 36, 2 (2013), 75--81.Google ScholarGoogle ScholarCross RefCross Ref
  105. M. Y. Park, D. Yoon, K. Lee, S. Y. Kang, I. Park, S. H. Lee, W. Kim, H. J. Kam, Y. H. Lee, J. H. Kim, and R. W. Park. 2011. A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database. Pharmacoepidemiology and Drug Safety 20, 6 (2011), 598--607.Google ScholarGoogle ScholarCross RefCross Ref
  106. V. N. Patel and D. C. Kaelber. 2013. Using aggregated, de-identified electronic health record data for multivariate pharmacosurveillance: A case study of azathioprine. Journal of Biomedical Informatics 52 (2013), 36--42.Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. M. Paul and M. Dredze. 2011. You are what you tweet: Analyzing twitter for public health. In International AAAI Conference on Weblogs and Social Media. 265--272.Google ScholarGoogle Scholar
  108. J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. L. Peters, J. E. Kapusnik-Uner, T. Nguyen, and O. Bodenreider. 2011. An approximate matching method for clinical drug names. In AMIA Annual Symposium Proceedings, Vol. 2011. 1117--1126.Google ScholarGoogle Scholar
  110. L. Philips. 1990. Hanging on the metaphone. Computer Language 7, 12 (1990), 39--44.Google ScholarGoogle Scholar
  111. B. Quilitz and U. Leser. 2008. Querying distributed RDF data sources with SPARQL. In Proceedings of the 5th European Semantic Web Conference on the Semantic Web: Research and Applications. Canary Islands, Spain. 524--538. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. E. Rahm and P. A. Bernstein. 2001. A survey of approaches to automatic schema matching. VLDB Journal 10, 4 (2001), 334--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. E. Ramirez, A. J. Carcas, A. M. Borobia, S. H. Lei, E. Piñana, S. Fudio, and J. Frias. 2009. A pharmacovigilance program from laboratory signals for the detection and reporting of serious adverse drug reactions in hospitalized patients. Clinical Pharmacology and Therapeutics 87, 1 (2009), 74--86.Google ScholarGoogle ScholarCross RefCross Ref
  114. J. M. Reps, J. M. Garibaldi, U. Aickelin, D. Soria, J. E. Gibson, and R. B. Hubbard. 2012. Comparing data-mining algorithms developed for longitudinal observational databases. In 12th UK Workshop on Computational Intelligence. 1--8.Google ScholarGoogle Scholar
  115. J. M. Reps, J. M. Garibaldi, U. Aickelin, D. Soria, J. Gibson, and R. Hubbard. 2013. Comparison of algorithms that detect drug side effects using electronic healthcare databases. Soft Computing 17, 12 (2013), 2381--2397. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. E. E. Roughead and S. J. Semple. 2009. Medication safety in acute care in Australia: Where are we now? Part 1: A review of the extent and causes of medication problems 2002--2008. Australia and New Zealand Health Policy 6, 1 (2009), 18.Google ScholarGoogle ScholarCross RefCross Ref
  117. T. Sakaeda, A. Tamon, K. Kadoyama, and Y. Okuno. 2013. Data mining of the public version of the FDA adverse event reporting system. International Journal of Medical Sciences 10, 7 (2013), 796--803.Google ScholarGoogle ScholarCross RefCross Ref
  118. M. Samwald, A. Jentzsch, C. Bouton, C. Kallesøe, E. Willighagen, J. Hajagos, M. Marshall, E. Prud’hommeaux, O. Hassanzadeh, and E. Pichler. 2011. Linked open drug data for pharmaceutical research and development. Journal of Cheminformatics 3, 19 (2011), 6 pages.Google ScholarGoogle ScholarCross RefCross Ref
  119. S. Sarawagi and A. Bhamidipaty. 2002. Interactive deduplication using active learning. In 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. N. Savage. 2012. Digging for drug facts. Communications of the ACM 55, 10 (2012), 11--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. D. Scanfeld, V. Scanfeld, and E. Larson. 2010. Dissemination of health information through social networks: Twitter and antibiotic. American Journal of Infection Control 3, 38 (2010), 182--188.Google ScholarGoogle ScholarCross RefCross Ref
  122. B. A. Slade, L. Leidel, C. Vellozzi, E. J. Woo, W. Hua, A. Sutherland, H. S. Izurieta, R. Ball, N. Miller, and M. M. Braun. 2009. Postlicensure safety surveillance for quadrivalent human papillomavirus recombinant vaccine. Journal of the American Medical Association 302, 7 (2009), 750--757.Google ScholarGoogle ScholarCross RefCross Ref
  123. P. E. Stang, P. B. Ryan, J. A. Racoosin, J. M. Overhage, A. G. Hartzema, C. Reich, E. Welebob, T. Scarnecchia, and J. Woodcock. 2010. Advancing the science for active surveillance: Rationale and design for the Observational Medical Outcomes Partnership. Annals of Internal Medicine 153, 9 (2010), 600--606.Google ScholarGoogle ScholarCross RefCross Ref
  124. M. Stephens, D. Buckingham, J. C. Talbot, and P. Routledge. 1985. The Detection of New Adverse Drug Reactions. Stockton Press.Google ScholarGoogle Scholar
  125. B. H. Stricker and J. G. Tijssen. 1992. Serum sickness-like reactions to cefaclor. Journal of Clinical Epidemiology 45, 10 (1992), 1177--1184.Google ScholarGoogle ScholarCross RefCross Ref
  126. M. Suling and I. Pigeot. 2012. Signal detection and monitoring based on longitudinal healthcare data. Pharmaceutics 4, 4 (2012), 607--640.Google ScholarGoogle ScholarCross RefCross Ref
  127. The Yellow Card Scheme. 2013. Homepage. Retrieved from https://yellowcard.mhra.gov.uk/.Google ScholarGoogle Scholar
  128. Petra A. Thrmann. 2001. Methods and systems to detect adverse drug reactions in hospitals. Drug Safety 24, 13 (2001), 961--968. DOI:http://dx.doi.org/10.2165/00002018-200124130-00003Google ScholarGoogle ScholarCross RefCross Ref
  129. A. Tinoco, R. S. Evans, C. J. Staes, J. F. Lloyd, J. M. Rothschild, and P. J. Haug. 2011. Comparison of computerized surveillance and manual chart review for adverse events. Journal of the American Medical Informatics Association 18, 4 (2011), 491--497.Google ScholarGoogle ScholarCross RefCross Ref
  130. Y. Tsuruoka, J. McNaught, and S. Ananiadou. 2008. Normalizing biomedical terms by minimizing ambiguity and variability. BMC Bioinformatics 9, 3 (2008), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  131. V. E. Valkhoff, P. M. Coloma, G. M. Masclee, R. Gini, F. Innocenti, F. Lapi, M. Molokhia, M. Mosseveld, M. S. Nielsson, M. Schuemie, F. Thiessard, J. van der Lei, M. C. Sturkenboom, G. Trifiró, and EU-ADR Consortium. 2014. Validation study in four health-care databases: Upper gastrointestinal bleeding misclassification affects precision but not magnitude of drug-related upper gastrointestinal bleeding risk. Journal of Clinical Epidemiology 67, 8 (2014), 921--931.Google ScholarGoogle ScholarCross RefCross Ref
  132. W. Wang, K. Haerian, H. Salmasian, R. Harpaz, H. Chase, and C. Friedman. 2011. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from Pubmed citations. In AMIA Annual Symposium Proceedings. Washington, DC, 1464--1470.Google ScholarGoogle Scholar
  133. X. Wang, G. Hripcsak, and C. Friedman. 2009a. Characterizing environmental and phenotypic associations using information theory and electronic health records. BMC Bioinformatics 10, 9 (2009), S13.Google ScholarGoogle ScholarCross RefCross Ref
  134. X. Wang, G. Hripcsak, M. Markatou, and C. Friedman. 2009b. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: A feasibility study. Journal of the American Medical Informatics Association 16, 3 (2009), 328--337.Google ScholarGoogle ScholarCross RefCross Ref
  135. R. W. White, N. P. Tatonetti, N. H. Shah, R. B. Altman, and E. Horvitz. 2013. Web-scale pharmacovigilance: Listening to signals from the crowd. Journal of the American Medical Informatics Association 20, 3 (2013), 404--408.Google ScholarGoogle ScholarCross RefCross Ref
  136. G. Williams, R. Baxter, C. Kelman, C. Rainsford, H. He, L. Gu, D. Vickers, and S. Hawkins. 2002. Estimating episodes of care using linked medical claims data. In Advances in Artificial Intelligence. 660--671. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. A. M. Wilson, L. Thabane, and A. Holbrook. 2004. Application of data mining techniques in pharmacovigilance. British Journal of Clinical Pharmacology 57, 2 (2004), 127--134.Google ScholarGoogle ScholarCross RefCross Ref
  138. R. L. Woosley. 2013. One hundred years of drug regulation: Where do we go from here? Annual Review of Pharmacology and Toxicology 53 (2013), 255--273.Google ScholarGoogle Scholar
  139. L. Wuerdeman, L. Volk, L. Pizziferri, R. Tsurikova, C. Harris, R. Feygin, M. Epstein, K. Meyers, J. S. Wald, and D. Lansky. 2005. How accurate is information that patients contribute to their electronic health record? In AMIA Annual Symposium Proceedings, Vol. 2005. 834.Google ScholarGoogle Scholar
  140. H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman, and J. C. Denny. 2010. MedEx: A medication information extraction system for clinical narratives. Journal of the American Medical Informatics Association 17, 1 (2010), 19--24.Google ScholarGoogle ScholarCross RefCross Ref
  141. C. C. Yang, L. Jiang, H. Yang, and X. Tang. 2012a. Detecting signals of adverse drug reactions from health consumer contributed content in social media. In ACM SIGKDD Workshop on Health Informatics.Google ScholarGoogle Scholar
  142. C. Yang, P. Srinivasan, and P. M. Polgreen. 2012b. Automatic adverse drug events detection using letters to the editor. In AMIA Annual Symposium Proceedings. 1030--1039.Google ScholarGoogle Scholar
  143. A. Yates and N. Goharian. 2013. ADRTrace: Detecting expected and unexpected adverse drug reactions from user reviews on social media sites. Advances in Information Retrieval 7814 (2013), 816--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. E. Yom-Tov and E. Gabrilovich. 2013. Postmarket drug surveillance without trial costs: Discovery of adverse drug reactions through large-scale analysis of web search queries. Journal of Medical Internet Research 15, 6 (2013), e124.Google ScholarGoogle ScholarCross RefCross Ref
  145. Q. Zeng, S. Kogan, N. Ash, R. A. Greenes, and A. A. Boxwala. 2002. Characteristics of consumer terminology for health information retrieval. Methods of Information in Medicine 41, 4 (2002), 289--298.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Text and Data Mining Techniques in Adverse Drug Reaction Detection

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 47, Issue 4
          July 2015
          573 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/2775083
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 May 2015
          • Accepted: 1 January 2015
          • Revised: 1 November 2014
          • Received: 1 March 2014
          Published in csur Volume 47, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader