skip to main content
research-article

A Framework for Psychophysiological Classification within a Cultural Heritage Context Using Interest

Published:14 January 2015Publication History
Skip Abstract Section

Abstract

This article presents a psychophysiological construct of interest as a knowledge emotion and illustrates the importance of interest detection in a cultural heritage context. The objective of this work is to measure and classify psychophysiological reactivity in response to cultural heritage material presented as visual and audio. We present a data processing and classification framework for the classification of interest. Two studies are reported, adopting a subject-dependent approach to classify psychophysiological signals using mobile physiological sensors and the support vector machine learning algorithm. The results show that it is possible to reliably infer a state of interest from cultural heritage material using psychophysiological feature data and a machine learning approach, informing future work for the development of a real-time physiological computing system for use within an adaptive cultural heritage experience designed to adapt the provision of information to sustain the interest of the visitor.

References

  1. H. A. Arts. 2010. Sensorineural hearing loss in adults. In Otolaryngology: Head and Neck Surgery (5th ed.), P. W. Flint, B. H. Haughey, V. J. Lund, J. K. Niparko, M. A. Richardson, K. T. Robbins, and J. Regan Thomas (Eds.). Mosby Elsevier, Philadelphia, PA, 2116--2130.Google ScholarGoogle Scholar
  2. D. E. Berlyne. 1960. Conflict, Arousal, and Curiosity. McGraw-Hill, London, England.Google ScholarGoogle Scholar
  3. W. Boucsein. 1992. Electrodermal Activity. Plenum Press, New York, NY.Google ScholarGoogle Scholar
  4. M. P. Bryden, T. Free, S. Gagne, and P. Groff. 1991. Handedness effects in the detection of dichotically-presented words and emotions. Cortex 27, 2, 229--235.Google ScholarGoogle ScholarCross RefCross Ref
  5. C. J. C. Burges. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 2, 121--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. T. Cacioppo, L. K. Bush, and L. G. Tassinary. 1990. Microexpressive facial actions as a function of affective stimuli: Replication and extension. Personality and Social Psychology Bulletin 18, 515--526.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. T. Cacioppo, L. G. Tassinary, and G. Berntson (Eds.). 2007. Handbook of Psychophysiology (3rd ed.). Cambridge University Press, Cambridge, MA.Google ScholarGoogle Scholar
  8. C. J. Cela-Conde, G. Marty, F. Maestú, T. Ortiz, E. Munar, A. Fernández, M. Roca, J. Rosselló, and F. Quesney. 2004. Activation of the prefrontal cortex in the human visual aesthetic perception. Proceedings of the National Academy of Sciences of the United States of America 101, 16, 6321--6325.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. A. Coan and J. J. B. Allen. 2004. Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology 67, 1--2, 7--49.Google ScholarGoogle Scholar
  10. C. Cortes and V. Vapnik. 1995. Support-vector networks. In Machine Learning. Kluwer, 273--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. C. Cupchik, O. Vartanian, A. Crawley, and D. J. Mikulis. 2009. Viewing artworks: Contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain and Cognition 70, 1, 84--91.Google ScholarGoogle ScholarCross RefCross Ref
  12. R. J. Davidson. 2004. What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology 67, 219--233.Google ScholarGoogle ScholarCross RefCross Ref
  13. R. J. Davidson, J. P. Chapman, L. J. Chapman, and J. B. Henriques. 1990. Asymmetrical brain electrical activity discriminates between psychometrically-matched verbal and spatial cognitive tasks. Psychophysiology 27, 528--543.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. De Morgan. 1847. Formal Logic. Walton and Maberly, London, England.Google ScholarGoogle Scholar
  15. C. De Rojas and C. Camarero. 2008. Visitors’ experience, mood and satisfaction in a heritage context. Evidence from an interpretation center. Tourism Management 29, 525--537.Google ScholarGoogle ScholarCross RefCross Ref
  16. I. G. Dobbins, H. Foley, D. L. Schacter, and A. D. Wagner. 2002. Executive control during episodic retrieval: Multiple prefrontal processes subserve source memory. Neuron 35, 989--996.Google ScholarGoogle ScholarCross RefCross Ref
  17. P. Ekman. 1992. An argument for basic emotions. Cognition and Emotion 6, 169--200.Google ScholarGoogle Scholar
  18. S. H. Fairclough. 2009. Fundamentals of physiological computing. Interacting with Computers 21, 1--2, 133--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. H. Fairclough and K. Gilleade. 2012. Construction of the biocybernetic loop: A case study. In Proceedings of the 14th ACM International Conference on Multimodal Interaction. ACM, New York, NY, 571--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. I. Goldman, J. M. Stern, J. Engel, and M. S. Cohen. 2002. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13, 2487--2492.Google ScholarGoogle ScholarCross RefCross Ref
  21. B. Hahn, T. J. Ross, and E. A. Stein. 2006. Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 32, 842--853.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. N. Henson, T. Shallice, and R. J. Dolan. 1999. Right prefrontal cortex and episodic memory retrieval: A functional MRI test of the monitoring hypothesis. Brain 122, 1367--1381.Google ScholarGoogle ScholarCross RefCross Ref
  23. S. Hidi and K. A. Renninger. 2006. The four-phase model of interest development. Educational Psychologist 41, 2, 111--127.Google ScholarGoogle ScholarCross RefCross Ref
  24. K. Holzinger, M. Lehner, M. Fassold, and A. Holzinger. 2011. Archaeological scavenger hunt on mobile devices: From education to e-business—a triple adaptive mobile application for supporting experts, tourists and children. In Proceedings of the International Conference on e-Business (ICE-B’11). 31--136.Google ScholarGoogle Scholar
  25. A. Isaksson, M. Wallman, H. Göransson, and M. G. Gustafsson. 2008. Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recognition Letters 29, 14, 1960--1965. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. H. Jasper. 1958. The 10--20 electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology 10, 370--375.Google ScholarGoogle ScholarCross RefCross Ref
  27. H. Leder, B. Belke, A. Oesberst, and D. Augustin. 2004. A model of aesthetic appreciation and aesthetic judgement. British Journal of Psychology 95, 489--508.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. A. McFarland and R. Kennison. 1989. Handedness affects emotional valence asymmetry. Perceptual and Motor Skills 68, 2, 435--441.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Nadal and M. T. Pearce. 2011 The Copenhagen neuroaesthetics conference: Prospects and pitfalls for an emerging field. Brain and Cognition 76, 172--183.Google ScholarGoogle ScholarCross RefCross Ref
  30. D. Novak, M. Mihelj, and M. Munih. 2012. A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interacting with Computers 24, 3, 154--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Ott and F. Pozzi. 2011. Towards a new era for cultural heritage education: Discussing the role of ICT. Computers in Human Behavior 27, 1365--1371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. P. Perria, G. Rosadini, and G. F. Rossi. 1961. Determination of side of cerebral dominance with amobarbital. Archives of Neurology 4, 173--181.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Petrides. 1994. Frontal lobes and behaviour. Current Opinion in Neurobiology 4, 207--211.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Pine and J. H. Gilmore. 1998. Welcome to the experience economy. Harvard Business Review, 97--107.Google ScholarGoogle Scholar
  35. J. C. Platt. 1999. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods, B. Schlkopf, C. J. C. Burges, and A. J. Smola (Eds.). MIT Press, Cambridge, MA, 185--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. N. Ramnani and A. M. Owen. 2004. Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience 5, 3, 184--194.Google ScholarGoogle ScholarCross RefCross Ref
  37. P. Rani, C. Liu, N. Sarkar, and E. Vanman. 2006. An empirical study of machine learning techniques for affect recognition in human--robot interaction. Pattern Analysis and Applications 9, 1, 58--69. DOI:10.1007/s10044--006--0025-y Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R. Rieland. 2012. Augmented Reality Livens Up Museums. Retrieved November 25, 2014, from http://www.smithsonianmag.com/innovation/augmented-reality-livens-up-museums-22323417/?no-istGoogle ScholarGoogle Scholar
  39. P. Rodway, P. L. Wright, and S. Hardie. 2003. The valence-specific laterality effect in free viewing conditions: The influence of sex, handedness, and response bias. Brain and Cognition 53, 3, 452--463.Google ScholarGoogle ScholarCross RefCross Ref
  40. E. T. Rolls. 2000. The orbitofrontal cortex and reward. Cerebral Cortex 10, 284--294.Google ScholarGoogle ScholarCross RefCross Ref
  41. J. A. Russell. 1980. A circumplex model of affect. Journal of Personality and Social Psychology 39, 1161--1178.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. A. Russell. 2003. Core affect and the psychological construction of emotion. Psychological Review 110, 145--172.Google ScholarGoogle ScholarCross RefCross Ref
  43. E. K. Silberman and H. Weingartner. 1986. Hemispheric lateralization of functions related to emotion. Brain and Cognition 5, 322--353.Google ScholarGoogle ScholarCross RefCross Ref
  44. P. J. Silvia. 2008. Interest—the curious emotion. Current Directions in Psychological Science 17, 1, 57--60.Google ScholarGoogle Scholar
  45. P. J. Silvia. 2010. Confusion and interest: The role of knowledge emotions in aesthetic experience. Psychology of Aesthetics, Creativity, and the Arts 4, 2, 75--80.Google ScholarGoogle ScholarCross RefCross Ref
  46. P. A. Tataranni, J.-F. Gautier, K. Chen, A. Uecker, D. Bandy, A. D. Salbe, R. E. Pratley, M. Lawson, E. M. Reiman, and E. Ravussin. 1999. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proceedings of the National Academies of Science of the United States of America 96, 4569--4574.Google ScholarGoogle ScholarCross RefCross Ref
  47. W. Tschacher, S. Greenwood, V. Kirchberg, S. Wintzerith, K. van den Berg, and M. Trondle. 2011. Physiological correlates of aesthetic perception of artworks in a museum. Psychology of Aesthetics, Creativity, and the Arts 6, 1, 96--103.Google ScholarGoogle ScholarCross RefCross Ref
  48. E. A. Vessel, G. G. Starr, and N. Rubin. 2012. The brain on art: Intense aesthetic experience activates the default mode network. Frontiers in Human Neuroscience 6, 66.Google ScholarGoogle ScholarCross RefCross Ref
  49. A. D. Wagner, D. L. Schacter, M. Rotte, W. Koutstaal, A. Maril, A. M. Dale, B. R. Rosen, and R. L. Buckner. 1998. Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188--1191.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Framework for Psychophysiological Classification within a Cultural Heritage Context Using Interest

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Computer-Human Interaction
      ACM Transactions on Computer-Human Interaction  Volume 21, Issue 6
      Special Issue on Physiological Computing for Human-Computer Interaction
      January 2015
      144 pages
      ISSN:1073-0516
      EISSN:1557-7325
      DOI:10.1145/2722827
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 January 2015
      • Accepted: 1 September 2014
      • Revised: 1 August 2014
      • Received: 1 January 2014
      Published in tochi Volume 21, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader