skip to main content
research-article

On the Performance of Lossy Compression Schemes for Energy Constrained Sensor Networking

Published:04 August 2014Publication History
Skip Abstract Section

Abstract

Lossy temporal compression is key for energy-constrained wireless sensor networks (WSNs), where the imperfect reconstruction of the signal is often acceptable at the data collector, subject to some maximum error tolerance. In this article, we evaluate a number of selected lossy compression methods from the literature and extensively analyze their performance in terms of compression efficiency, computational complexity, and energy consumption. Specifically, we first carry out a performance evaluation of existing and new compression schemes, considering linear, autoregressive, FFT-/DCT- and wavelet-based models , by looking at their performance as a function of relevant signal statistics. Second, we obtain formulas through numerical fittings to gauge their overall energy consumption and signal representation accuracy. Third, we evaluate the benefits that lossy compression methods bring about in interference-limited multihop networks, where the channel access is a source of inefficiency due to collisions and transmission scheduling. Our results reveal that the DCT-based schemes are the best option in terms of compression efficiency but are inefficient in terms of energy consumption. Instead, linear methods lead to substantial savings in terms of energy expenditure by, at the same time, leading to satisfactory compression ratios, reduced network delay, and increased reliability performance.

References

  1. P. Abrahamsen. 1997. A Review of Gaussian Random Fields and Correlation Functions. Technical Report. Norwegian Computing Center, Oslo, Norway.Google ScholarGoogle Scholar
  2. L. Atzoria, A. Iera, and G. Morabito. 2010. The internet of things: A survey. Computer Networks 54, 15 (2010), 2787--2805. DOI:http://dx.doi.org/10.1016/j.comnet.2010.05.010 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. C. Barr and K. Asanović. 2006. Energy-aware lossless data compression. ACM Transactions on Computer Systems 24, 3 (Aug. 2006), 250--291. DOI:http://dx.doi.org/10.1145/1151690.1151692 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. Benzi, N. Anglani, E. Bassi, and L. Frosini. 2011. Electricity smart meters interfacing the households. IEEE Transactions on Industrial Electronics 58, 10 (2011), 4487--4494. DOI:http://dx.doi.org/10.1109/TIE. 2011.2107713Google ScholarGoogle ScholarCross RefCross Ref
  5. T. Berger. 1971. Rate Distortion Theory: A Mathematical Basis for Data Compression. Prentice Hall.Google ScholarGoogle Scholar
  6. L. Bierl. 2000. MSP430 Family Mixed-Signal Microcontroller Application Reports. Technical Report. Texas Instruments, Inc.Google ScholarGoogle Scholar
  7. H. Chen, J. Li, and P. Mohapatra. 2004. RACE: Time series compression with rate adaptivity and error bound for sensor networks. In IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS'04). DOI:http://dx.doi.org/10.1109/MAHSS.2004.1392089Google ScholarGoogle Scholar
  8. Chipcon. 2007. SmartRF CC2420: 2.4 GHz IEEEE 802.15.4/ZigBee-ready RF Transceiver. Technical Report. Texas Instruments, Inc.Google ScholarGoogle Scholar
  9. R. Crepaldi, S. Friso, A. F. Harris III, M. Mastrogiovanni, C. Petrioli, M. Rossi, A. Zanella, and M. Zorzi. 2007. The design, deployment, and analysis of SignetLab: A sensor network testbed and interactive management tool. In IEEE Tridentcom. DOI:http://dx.doi.org/10.1109/TRIDENTCOM.2007.4444656Google ScholarGoogle Scholar
  10. R. B. Davies and D. S. Harte. 1987. Tests for Hurst effect. Biometrika 74, 1 (1987), 95--101. DOI:http://dx. doi.org/10.1093/biomet/74.1.95Google ScholarGoogle ScholarCross RefCross Ref
  11. S. Dodson. 2003. The internet of things. The Guardian (Oct 2003). Available online at http://www. theguardian.com/technology/2003/oct/09/shopping.newmedia.Google ScholarGoogle Scholar
  12. D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies. 1998. Data compression and harmonic analysis. IEEE Transactions on Information Theory, IEEE Transactions on 44, 6 (1998), 2435--2476. DOI:http://dx.doi.org/10.1109/18.720544 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. D. Donohue. 2013. Wav Data Files for Class Examples and Laboratory Experiments. Retrieved from http://www.engr.uky.edu/∼donohue/ee422/Data/DataEE422.htm.Google ScholarGoogle Scholar
  14. E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. 2007. In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communication Magazine 14, 2 (April 2007), 70--87. DOI:http://dx.doi.org/10.1109/MWC.2007.358967 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. IEEE P802.15 Working Group. 2003. Std. IEEE 802.15.4-2003: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). In IEEE Standard. 1--89.Google ScholarGoogle Scholar
  16. C. Kappler and G. Riegel. 2004. A real-world, simple wireless sensor network for monitoring electrical energy consumption. In European Workshop on Wireless Sensor Networks (EWSN'04).Google ScholarGoogle Scholar
  17. Y. Liang. 2011. Efficient temporal compression in wireless sensor networks. In International Conference on Local Computer Networks (LCN'11). DOI:http://dx.doi.org/10.1109/LCN.2011.6115508 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Liu, K. Wu, and J Pei. 2007. An energy-efficient data collection framework for wireless sensor networks by exploiting spatio-temporal correlation. IEEE Transactions on Parallel and Distributed Systems 18, 7 (Jul 2007), 1010--1023. DOI:http://dx.doi.org/10.1109/TPDS.2007.1046 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J.-L. Lu, F. Valois, and M. Dohler. 2010. Optimized data aggregation in WSNs using adaptive ARMA. In International Conference on Sensor Technologies and Applications (SENSORCOMM'10). Venice, Italy. DOI:http://dx.doi.org/10.1109/SENSORCOMM.2010.25 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Mao, B. D. O. Anderson, and B. Fidan. 2006. Online calibration of path loss exponent in wireless sensor networks. In IEEE Global Telecommunications Conference (GLOBECOM'06). DOI:http://dx.doi.org/10.1109/ GLOCOM.2006.497Google ScholarGoogle Scholar
  21. F. Marcelloni and M. Vecchio. 2009. An Efficient Lossless Compression Algorithm for Tiny nodes of monitoring wireless sensor networks. Computer Journal 52, 8 (Nov. 2009), 969--987. DOI:http://dx.doi.org/10.1093/ comjnl/bxp035 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Marcelloni and M. Vecchio. 2010. Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization. Elsevier Information Sciences 180, 10 (May 2010), 1924--1941. DOI:http://dx.doi.org/10.1016/j.ins.2010.01.027 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco, G. Boggia, and M. Dohler. 2012. Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys Tutorials 99 (2012), 1--18. DOI:http://dx.doi.org/10.1109/SURV.2012.111412.00158Google ScholarGoogle Scholar
  24. S. Pattem and B. Krishnamachari. 2004. The impact of spatial correlation on routing with compression in wireless sensor networks. In ACM/IEEE International Symposium on Information Processing in Sensor Networks (IPSN'04). DOI:http://dx.doi.org/10.1109/IPSN.2004.1307320 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. N. D. Pham, T. D. Le, and H. Choo. 2008. Enhance exploring temporal correlation for data collection in WSNs. In IEEE International Conference on Research, Innovation and Vision for the Future (RIVF'08). DOI:http://dx.doi.org/10.1109/RIVF.2008.4586356Google ScholarGoogle Scholar
  26. G. M. Phillips. 2003. Interpolation and Approximation by Polynomials. Springer.Google ScholarGoogle Scholar
  27. G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi. 2012. Sensing, compression and recovery for WSNs: Sparse signal modeling and monitoring framework. IEEE Transactions on Wireless Communications 11, 10 (Oct. 2012), 3447--3461. DOI:http://dx.doi.org/10.1109/TWC.2012.081612.110612Google ScholarGoogle ScholarCross RefCross Ref
  28. K. R. Rao and P. Yip. 1990. Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, San Diego, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, and M. Zorzi. 2010. SYNAPSE++: Code dissemination in wireless sensor networks using fountain codes. IEEE Transactions on Mobile Computing 9, 12(Dec. 2010), 1749--1765. DOI:http://dx.doi.org/10.1109/TMC.2010.109 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. M. Sadler and M. Martonosi. 2006. Data compression algorithms for energy-constrained devices in delay tolerant networks. In International Conference on Embedded Networked Sensor Systems (SenSys'06). DOI:http://dx.doi.org/10.1145/1182807.1182834 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow, and D. Estrin. 2004. Lightweight temporal compression of microclimate datasets. In IEEE International Conference on Local Computer Networks (LCN'04). DOI:http://dx.doi.org/10.1109/LCN.2004.72 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. A. Sharaf, J. Beaver, A. Labrinidis, R. Labrinidis, and P.K. Chrysanthis. 2003. TiNA: A scheme for temporal coherency-aware in-network aggregation. In ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE'03). DOI:http://dx.doi.org/10.1145/940923.940937 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and K. Araki. 2012. Practical data compression in wireless sensor networks: A survey. Elsevier Journal of Network and Computer Applications 35, 1 (2012), 37--59. DOI:http://dx.doi.org/10.1016/j.jnca.2011.03.001 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin. 2004. Habitat monitoring with sensor networks. ACM Communications 47, 6 (Jun 2004), 34--40. DOI:http://dx.doi. org/10.1145/990680.990704 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. van der Byl, R. Neilson, and R.H. Wilkinson. 2009. An evaluation of compression techniques for wireless sensor networks. In AFRICON. DOI:http://dx.doi.org/10.1109/AFRCON.2009.5308078Google ScholarGoogle Scholar
  36. I. Vilajosana, G. Khazaradze, E. Suriñach, E. Lied, and K. Kristensen. 2007. Snow avalanche speed determination using seismic methods. Elsevier Cold Regions Science and Technology 49, 1 (2007), 2--10. DOI:http://dx.doi.org/10.1016/j.coldregions.2006.09.007Google ScholarGoogle ScholarCross RefCross Ref
  37. R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof. 2010. Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magazine 2, 2 (2010), 29--38. DOI:http://dx.doi.org/10.1109/MSSC.2010.936667Google ScholarGoogle ScholarCross RefCross Ref
  38. G. K. Wallace. 1992. The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics 38, 1 (Feb. 1992), xviii --xxxiv. DOI:http://dx.doi.org/10.1109/30.125072 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and M. Welsh. 2006. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing 10, 2 (March--April 2006), 18--25. DOI:http://dx.doi.org/10.1109/MIC.2006.26 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin. 2004. A wireless sensor network for structural monitoring. In ACM Conference on Embedded Networked Sensor Systems (SENSYS'04). Baltimore, MD. DOI:http://dx.doi.org/10.1145/1031495.1031498 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. O. Yang and W. Heinzelman. 2012. Modeling and Performance Analysis for Duty-Cycled MAC Protocols with Applications to S-MAC and X-MAC. IEEE Transactions on Mobile Computing 11, 6 (June 2012), 905--921. DOI:http://dx.doi.org/10.1109/TMC.2011.121 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wei Ye, J. Heidemann, and D. Estrin. 2002. An energy-efficient MAC protocol for Wireless Sensor Networks. In IEEE INFOCOM, Vol. 3. 1567--1576. DOI:http://dx.doi.org/10.1109/INFCOM.2002.1019408Google ScholarGoogle Scholar
  43. Davide Zordan, Borja Martinez, Ignasi Vilajosana, and Michele Rossi. 2012. To Compress or Not To Compress: Processing vs Transmission Tradeoffs for Energy Constrained Sensor Networking. Technical Report. Department of Information Engineering, University of Padova, Padova, Italy.Google ScholarGoogle Scholar
  44. Davide Zordan, Giorgio Quer, Michele Zorzi, and Michele Rossi. 2011. Modeling and Generation of Space-Time Correlated Signals for Sensor Network Fields. In IEEE Global Telecommunications Conference (GLOBECOM). Houston, TX, US. DOI:http://dx.doi.org/10.1109/GLOCOM.2011.6133891Google ScholarGoogle Scholar

Index Terms

  1. On the Performance of Lossy Compression Schemes for Energy Constrained Sensor Networking

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Sensor Networks
      ACM Transactions on Sensor Networks  Volume 11, Issue 1
      November 2014
      631 pages
      ISSN:1550-4859
      EISSN:1550-4867
      DOI:10.1145/2648771
      • Editor:
      • Chenyang Lu
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 August 2014
      • Revised: 1 January 2013
      • Accepted: 1 January 2013
      • Received: 1 December 2012
      Published in tosn Volume 11, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader