skip to main content
research-article

Toward Personalized Context Recognition for Mobile Users: A Semisupervised Bayesian HMM Approach

Authors Info & Claims
Published:23 September 2014Publication History
Skip Abstract Section

Abstract

The problem of mobile context recognition targets the identification of semantic meaning of context in a mobile environment. This plays an important role in understanding mobile user behaviors and thus provides the opportunity for the development of better intelligent context-aware services. A key step of context recognition is to model the personalized contextual information of mobile users. Although many studies have been devoted to mobile context modeling, limited efforts have been made on the exploitation of the sequential and dependency characteristics of mobile contextual information. Also, the latent semantics behind mobile context are often ambiguous and poorly understood. Indeed, a promising direction is to incorporate some domain knowledge of common contexts, such as “waiting for a bus” or “having dinner,” by modeling both labeled and unlabeled context data from mobile users because there are often few labeled contexts available in practice. To this end, in this article, we propose a sequence-based semisupervised approach to modeling personalized context for mobile users. Specifically, we first exploit the Bayesian Hidden Markov Model (B-HMM) for modeling context in the form of probabilistic distributions and transitions of raw context data. Also, we propose a sequential model by extending B-HMM with the prior knowledge of contextual features to model context more accurately. Then, to efficiently learn the parameters and initial values of the proposed models, we develop a novel approach for parameter estimation by integrating the Dirichlet Process Mixture (DPM) model and the Mixture Unigram (MU) model. Furthermore, by incorporating both user-labeled and unlabeled data, we propose a semisupervised learning-based algorithm to identify and model the latent semantics of context. Finally, experimental results on real-world data clearly validate both the efficiency and effectiveness of the proposed approaches for recognizing personalized context of mobile users.

References

  1. G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. 1997. Cyberguide: A mobile context-aware tour guide. Wireless Networks 3, 5, 421--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. H. Albert and S. Chib. 1993. Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. Journal of Business & Economic Statistics 11, 1, 1--15.Google ScholarGoogle Scholar
  3. C. B. Anagnostopoulos, A. Tsounis, and S. Hadjiefthymiades. 2007. Context awareness in mobile computing environments. Wireless Personal Communications 42, 3, 445--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. E. Antoniak. 1974. Mixtures of dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics 1152--1174.Google ScholarGoogle Scholar
  5. L. Azzopardi, M. Girolami, and K. Van Risjbergen. 2003. Investigating the relationship between language model perplexity and IR precision-recall measures. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 369--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Bao, H. Cao, E. Chen, J. Tian, and H. Xiong. 2012. An unsupervised approach to modeling personalized contexts of mobile users. Knowledge and Information Systems 31, 2, 345--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. E. Baum, T. Petrie, G. Soules, and N. Weiss. 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics 41, 1, 164--171.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. Belimpasakis, K. Roimela, and Y. You. 2009. Experience explorer: A life-logging platform based on mobile context collection. In Proceedings of the 3rd International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST’09). IEEE, 77--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. M. Blei and J. D. Lafferty. 2006. Dynamic topic models. In Proceedings of the 23rd International Conference on Machine Learning. ACM, 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993--1022. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Cao, T. Bao, Q. Yang, E. Chen, and J. Tian. 2010. An effective approach for mining mobile user habits. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM, 1677--1680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Cao, D. Jiang, J. Pei, E. Chen, and H. Li. 2009. Towards context-aware search by learning a very large variable length hidden Markov model from search logs. In Proceedings of the 18th International Conference on World Wide Web. ACM, 191--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Chu. 2008. Unstructured audio classification for environment recognition. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence. 13--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. A. Churchill. 1989. Stochastic models for heterogeneous dna sequences. Bulletin of Mathematical Biology 51, 1, 79--94.Google ScholarGoogle ScholarCross RefCross Ref
  15. N. Eagle and A. S. Pentland. 2009. Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology 63, 7, 1057--1066.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. J. Eronen, V. T. Peltonen, J. T. Tuomi, A. P. Klapuri, S. Fagerlund, T. Sorsa, G. Lorho, and J. Huopaniemi. 2006. Audio-based context recognition. IEEE Transactions on Audio, Speech, and Language Processing, 14, 1, 321--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. R. Fredkin and J. A. Rice. 1992. Bayesian restoration of single-channel patch clamp recordings. Biometrics 427--448.Google ScholarGoogle Scholar
  18. S. Goldwater and T. Griffiths. 2007. A fully Bayesian approach to unsupervised part-of-speech tagging. In Annual Meeting: Association for Computational Linguistics. Vol. 45. 744.Google ScholarGoogle Scholar
  19. S. Guha, L. Yi, and D. Neuberg. 2008. Bayesian hidden Markov modeling of array CGH data. Journal of the American Statistical Association 103, 485--497.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. D. Hamilton. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the Econometric Society, 357--384.Google ScholarGoogle ScholarCross RefCross Ref
  21. G. Heinrich. 2005. Parameter Estimation for Text Analysis. Retrieved from http://www.arbylon.net/publications/text-est.pdf.Google ScholarGoogle Scholar
  22. J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and H. T. Toivonen. 2001. Time series segmentation for context recognition in mobile devices. In Proceedings of the IEEE International Conference on Data Mining (ICDM’01). IEEE, 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Huang, G. Yu, and Z. Wang. 2013. Dirichlet process mixture model for document clustering with feature partition. IEEE Transactions on Knowledge and Data Engineering 25, 8, 1748--1759. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Ishwaran and L. F. James. 2001. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association 96, 453, 161--173.Google ScholarGoogle ScholarCross RefCross Ref
  25. B.-H. Juang and L. R. Rabiner. 1991. Hidden Markov models for speech recognition. Technometrics 33, 3, 251--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Korpipää, M. Koskinen, J. Peltola, S.-M. Mäkelä, and T. Seppänen. 2003. Bayesian approach to sensor-based context awareness. Personal and Ubiquitous Computing 7, 2, 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. Leggetter and P. Woodland. 1995. Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Computer Speech and Language 9, 2, 171.Google ScholarGoogle ScholarCross RefCross Ref
  28. T. Lemlouma and N. Layaïda. 2004. Context-aware adaptation for mobile devices. In Proceedings of the 2004 IEEE International Conference on Mobile Data Management. IEEE, 106--111.Google ScholarGoogle Scholar
  29. B. G. Leroux and M. L. Puterman. 1992. Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. Biometrics 545--558.Google ScholarGoogle Scholar
  30. X. Li, H. Cao, E. Chen, and J. Tian. 2012. Learning to infer the status of heavy-duty sensors for energy-efficient context-sensing. ACM Transactions on Intelligent Systems and Technology (TIST) 3, 2, 35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. N. Liampotis, N. Kalatzis, I. Roussaki, P. Kosmides, I. Papaioannou, E. Sykas, M. Anagnostou, and S. Xynogalas. 2012. Addressing the context-awareness requirements in personal smart spaces. In Proceedings of the 2012 IEEE Asia-Pacific Services Computing Conference (APSCC’12). IEEE, 281--285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Liao, D. J. Patterson, D. Fox, and H. Kautz. 2007. Building personal maps from gps data. Annals of the New York Academy of Sciences 1093, 1, 249--265.Google ScholarGoogle ScholarCross RefCross Ref
  33. J. S. Liu, A. F. Neuwald, and C. E. Lawrence. 1999. Markovian structures in biological sequence alignments. Journal of the American Statistical Association 94, 445, 1--15.Google ScholarGoogle ScholarCross RefCross Ref
  34. H. Ma, H. Cao, Q. Yang, E. Chen, and J. Tian. 2012. A habit mining approach for discovering similar mobile users. In Proceedings of the 21st International Conference on World Wide Web. ACM, 231--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. M. Neal. 2000. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics 9, 2, 249--265.Google ScholarGoogle Scholar
  36. B. Nham, K. Siangliulue, and S. Yeung. 2008. Predicting mode of transport from iPhone accelerometer data. Technical report, Stanford University.Google ScholarGoogle Scholar
  37. K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. 2000. Text classification from labeled and unlabeled documents using em. Machine Learning 39, 2, 103--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. B. Peng, Y. Wang, and J.-T. Sun. 2012. Mining mobile users activities based on search query text and context. In Advances in Knowledge Discovery and Data Mining. Springer, 109--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Pievatolo, F. Ruggeri, and R. Soyer. 2012. A Bayesian hidden Markov model for imperfect debugging. Reliability Engineering & Systems Safety 103, 11--21.Google ScholarGoogle ScholarCross RefCross Ref
  40. L. R. Rabiner. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 2, 257--286.Google ScholarGoogle ScholarCross RefCross Ref
  41. N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. 2005. Activity recognition from accelerometer data. In Proceedings of the National Conference on Artificial Intelligence. Vol. 20. AAAI Press, 1541. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. R. Rawassizadeh, M. Tomitsch, K. Wac, and A. M. Tjoa. 2012. Ubiqlog: A generic mobile phone-based life-log framework. Personal and Ubiquitous Computing, 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. P. Resnik and E. Hardisty. 2010. Gibbs sampling for the uninitiated. Technical report, DTIC Document.Google ScholarGoogle Scholar
  44. B. Schilit, N. Adams, and R. Want. 1994. Context-aware computing applications. In Proceedings of the 1st Workshop on Mobile Computing Systems and Applications (WMCSA’94). IEEE, 85--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. 2006. Hierarchical Dirichlet processes. Journal of the American Statistical Association 101, 476, 1566--1581.Google ScholarGoogle ScholarCross RefCross Ref
  46. T. Teraoka. 2011. A study of exploration of heterogeneous personal data collected from mobile devices and web services. In Proceedings of the 5th FTRA International Conference on Multimedia and Ubiquitous Engineering (MUE’11). IEEE, 239--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. K. Yu, B. Zhang, H. Zhu, H. Cao, and J. Tian. 2012. Towards personalized context-aware recommendation by mining context logs through topic models. In Proceedings of the 16th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Springer-Verlag, Kuala Lumpur, Malaysia, 431--443. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Zheng, L. Liu, L. Wang, and X. Xie. 2008. Learning transportation mode from raw GPS data for geographic applications on the web. In Proceedings of the 17th International Conference on World Wide Web. ACM, 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. H. Zhu, H. Cao, E. Chen, H. Xiong, and J. Tian. 2012a. Exploiting enriched contextual information for mobile app classification. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management. ACM, 1617--1621. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. H. Zhu, E. Chen, K. Yu, H. Cao, H. Xiong, and J. Tian. 2012b. Mining personal context-aware preferences for mobile users. In Proceedings of the IEEE 12th International Conference on Data Mining (ICDM’12). IEEE, 1212--1217. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Toward Personalized Context Recognition for Mobile Users: A Semisupervised Bayesian HMM Approach

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Knowledge Discovery from Data
        ACM Transactions on Knowledge Discovery from Data  Volume 9, Issue 2
        November 2014
        193 pages
        ISSN:1556-4681
        EISSN:1556-472X
        DOI:10.1145/2672614
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 September 2014
        • Accepted: 1 April 2014
        • Revised: 1 December 2013
        • Received: 1 July 2013
        Published in tkdd Volume 9, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader