skip to main content
research-article

Emergent effects in multimodal feedback from virtual buttons

Published:01 February 2014Publication History
Skip Abstract Section

Abstract

The continued advancement in computer interfaces to support 3D tasks requires a better understanding of how users will interact with 3D user interfaces in a virtual workspace. This article presents two studies that investigated the effect of visual, auditory, and haptic sensory feedback modalities presented by a virtual button in a 3D environment on task performance (time on task and task errors) and user rating. Although we expected task performance to improve for conditions that combined two or three feedback modalities over a single modality, we instead found a significant emergent behavior that decreased performance in the trimodal condition. We found a significant increase in the number of presses when a user released the button before closing the virtual switch, suggesting that the combined visual, auditory, and haptic feedback led participants to prematurely believe they actuated a button. This suggests that in the design of virtual buttons, considering the effect of each feedback modality independently is not sufficient to predict performance, and unexpected effects may emerge when feedback modalities are combined.

Skip Supplemental Material Section

Supplemental Material

References

  1. E. M. Altinsoy. 2003. Perceptual aspects of auditory-tactile asynchrony. In Proc. ICSV 10. 3831--3838.Google ScholarGoogle Scholar
  2. J. L. Burke, M.S. Prewett, A. A. Gray, L. Yang, F. R. B. Stilson, M. D. Coovert, L. R. Elliot, and E. Redden. 2006. Comparing the effects of visual-auditory and visual-tactile feedback on user performance: a meta-analysis. In Proc. ICMI’06. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. G. Chu, T. Moscovich, and R. Balakrishnan. 2009. Haptic conviction widgets. In GI’09: Proceedings of Graphics Interface 2009. 207--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. R. Clare. 1976. Human factors: a most important ingredient in keyboard designs. EDN Magazine 21, 8 (1976), 99--102.Google ScholarGoogle Scholar
  5. A. Cockburn and S. Brewster. 2005. Multimodal feedback for the acquisition of small targets. Ergonomics 48, 9 (2005), 1129--1150.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. M. Cohen. 1982. Membrane keyboards and human performance. Human Factors and Ergonomics Society Annual Meeting Proceedings 26 (1982), 424--424.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. B. Colavita. 1974. Human sensory dominance. Perception and Psycophysics 16, 2 (1974), 409--412.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. E. DiFranco, G. L. Beauregard, and M.A. Srinivasan. 1997. The effect of auditory cues on the haptic perception of stiffness in virtual environments. In ASME Dynamic Systems and Control Division, Vol. 61. ASME, 17--22.Google ScholarGoogle Scholar
  9. M. Fukumoto and T. Sugimura. 2001. Active click: tactile feedback for touch panels. In ACM CHI’01 Extended Abstracts on Human Factors in Computing Systems. 121--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Guiard. 1987. Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. Journal of Motor Behavior 19 (1987), 486--517.Google ScholarGoogle ScholarCross RefCross Ref
  11. H3DAPI. 2013. Open Source Haptics. Retrieved from http://www.h3dapi.org.Google ScholarGoogle Scholar
  12. M. Hall, E. Hoggan, and S. Brewster. 2008. T-Bars: towards tactile user interfaces for mobile touchscreens. In MobileHCI’08. 411--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Hecht and M. Reiner. 2009. Sensory dominance in combinations of audio, visual and haptic stimuli. Experimental Brain Research 193 (Jan 2009), 307--314. Retrieved http://www.springerlink.com/index/Q69168K166M86757.pdfGoogle ScholarGoogle Scholar
  14. T. Hempel and E. Altinsoy. 2005. Multimodal user interfaces: designing media for the auditory and the tactile channel. In Handbook of HCI for Web Design, R.W. Proctor and K.-P. L. Vu (Eds.). Lawrence Erlbaum Associates, Mahwah, New Jersey, 134--155.Google ScholarGoogle Scholar
  15. E. Hoggan and S. Brewster. 2006. Crossmodal icons for information display. In ACM CHI’06 Extended Abstracts on Human Factors in Computing Systems. 857--862. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. Hoggan, A. Crossan, S. Brewster, and T. Kaaresoja. 2009. Audio or tactile feedback: which modality when?. In ACM CHI’09. 2253--2256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Hoggan, T. Kaaresoja, P. Laitinen, and S. Brewster. 2008. Crossmodal congruence: the look, feel and sound of touchscreen widgets. Proc. IMCI’08. 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. D. Kinkead and B. K. Gonzalez. 1969. Human Factors Design Recommendations for Touch-operated Keyboards—Final Report. Technical Report 12091-FR. Honeywell, Inc.Google ScholarGoogle Scholar
  19. R. Klatzky and S. J. Lederman. 2008. Object recognition by touch. In Blindness and Brain Plasticity in Navigation and Object Perception. 185--207.Google ScholarGoogle Scholar
  20. A. Kohlrausch and S. van de Par. 1999. Auditory-visual interaction: from fundamental research in cognitive psychology to (possible) applications. In Proc. SPIE. 34--44.Google ScholarGoogle Scholar
  21. A. Lécuyer, J.-M. Burkhardt, S. Coquillart, and P. Coiffet. 2001. “Boundary of illusion:” An experiment of sensory integration with a pseudo-haptic system. In Proc. VR’01. IEEE Computer Society, Washington, DC, 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Lee and S. Zhai. 2009. The performance of touch screen soft buttons. In ACM CHI’09. 309--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Leung, K. MacLean, M. B. Bertelsen, and M. Saubhasik. 2007. Evaluation of haptically augmented touchscreen gui elements under cognitive load. In Proc. ICMI’07. ACM, New York, NY, 374--381. DOI: http://dx.doi.org/10.1145/1322192.1322258 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. V. I. Levenshtein. 1965. Binary codes capable of correcting deletions, insertions, and reversals. Problems in Information Transmission (1965), 8--17.Google ScholarGoogle Scholar
  25. J. R. Lewis, K. M. Potosnak, and R. L. Magyar. 1997. Keys and Keyboards. Elsevier, Amsterdam, Chapter 54, 1285--1315.Google ScholarGoogle Scholar
  26. J. Long. 1976. Effects of delayed irregular feedback on unskilled and skilled keying performance. Ergonomics 19, 2 (1976), 183--202.Google ScholarGoogle ScholarCross RefCross Ref
  27. T. H. Massie and J. K. Salisbury. 1994. The PHANTOM haptic interface: A device for probing virtual objects. In ASME Winter Annual Meeting.Google ScholarGoogle Scholar
  28. H. McGurk and J. MacDonald. 1976. Hearing lips and seeing voices. Nature 264, 5588 (Dec. 1976), 746--748.Google ScholarGoogle ScholarCross RefCross Ref
  29. N. Miner, B. Gillespie, and T. Caudell. 1996. Examining the influence of audio and visual stimuli on a haptic display. In Proc. IMAGE’96.Google ScholarGoogle Scholar
  30. A. Nashel and S. Razzaque. 2003. Tactile virtual buttons for mobile devices. In ACM CHI’03. 854--855. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Oviatt. 2007. Multimodal Interfaces. CRC Press, 413--432.Google ScholarGoogle Scholar
  32. D. Pollard and M. B. Cooper. 1979. The effect of feedback on keying performance. Applied Ergonomics 10, 4 (1979), 194--200.Google ScholarGoogle ScholarCross RefCross Ref
  33. I. Poupyrev, S. Maruyama, and Jun Rekimoto. 2002. Ambient touch: designing tactile interfaces for handheld devices. In ACM UIST’02. 51--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Pure Data. 2013. PD Community Site. Retrieved from http://puredata.info/.Google ScholarGoogle Scholar
  35. C. J. Roe, W. H. Muto, and T. Blake. 1984. Feedback and key discrimination on membrane keypads. In Human Factors and Ergonomics Society Annual Meeting 28 (1984), 277--281.Google ScholarGoogle Scholar
  36. L. Rosenberg and S. Brave. 1996. Using force feedback to enhance human performance in graphical user interfaces. In CHI’96: Conference Companion on Human Factors in Computing Systems. ACM, New York, NY, 291--292. DOI: http://dx.doi.org/10.1145/257089.257327 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sensable. 2013. PHANTOM Omni Haptic Device. Retrieved from http://www.sensable.com/haptic-phantom-omni.htm.Google ScholarGoogle Scholar
  38. M. A. Srinivasan, G. L. Beauregard, and D. L. Brock. 1996. The impact of visual information on the haptic perception of stiffness in virtual environments. In ASME Winter Annual Meeting, Vol. 58. 555--559. Retrieved from http://touchlab.mit.edu/publications/1996_006.pdf.Google ScholarGoogle Scholar
  39. H. S. Vitense, J. A. Jacko, and V. K. Emery. 2002. Multimodal feedback: establishing a performance baseline for improved access by individuals with visual impairments. In Assets’02: Proceedings of the 5th International ACM Conference on Assistive Technologies. ACM, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. R. A. Wagner and M. J. Fischer. 1974. The String-to-String Correction Problem. J. ACM 21, 1 (1974), 168--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. C. D. Wickens. 2002. Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science 3, 2 (2002), 159--177.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Emergent effects in multimodal feedback from virtual buttons

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Computer-Human Interaction
      ACM Transactions on Computer-Human Interaction  Volume 21, Issue 1
      February 2014
      170 pages
      ISSN:1073-0516
      EISSN:1557-7325
      DOI:10.1145/2582013
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 February 2014
      • Accepted: 1 October 2013
      • Revised: 1 April 2013
      • Received: 1 January 2012
      Published in tochi Volume 21, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader