skip to main content
research-article

Sensor Placement with Multiple Objectives for Structural Health Monitoring

Published:20 June 2014Publication History
Skip Abstract Section

Abstract

Structural health monitoring (SHM) refers to the process of implementing a damage detection and characterization strategy for engineering structures. Its objective is to monitor the integrity of structures and detect and pinpoint the locations of possible damages. Although wired network systems still dominate in SHM applications, it is commonly believed that wireless sensor network (WSN) systems will be deployed for SHM in the near future, due to their intrinsic advantages. However, the constraints (e.g., communication, fault tolerance, energy) of WSNs must be considered before their deployment on structures. In this article, we study the methodology of sensor placement optimization for WSN-based SHM. Sensor placement plays a vital role in SHM applications, where sensor nodes are placed on critical locations that are of civil/structural engineering importance. We design a three-phase sensor placement approach, named TPSP, aiming to achieve the following objectives: finding a high-quality placement for a given set of sensors that satisfies the engineering requirements, ensuring communication efficiency and reliability and low placement complexity, and reducing the probability of failures in a WSN. Along with the sensor placement, we enable sensor nodes to develop “connectivity trees” in such a way that maintaining structural health state and network connectivity, for example, in case of a sensor fault, can be done in a distributed manner. The trees are constructed once (unlike dynamic clusters or trees) and do not incur additional communication costs for the WSN. We optimize the performance of TPSP by considering multiple objectives: low communication cost, fault tolerance, and lifetime prolongation. We validate the effectiveness and performance of TPSP through both simulations using real datasets and a proof-of-concept system on a physical structure.

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. 2002. Wireless sensor networks: A survey. Comput. Netw. 38, 4, 393--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Ansari, D. Pankin, and P. Mahonen. 2009. Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. Int. J. Wirel. Inf. Netw. 16, 3, 118--130.Google ScholarGoogle ScholarCross RefCross Ref
  3. K. Anshuman, J. Ratneshwar, W. Matthew, and J. Kerop. 2013. Damage detection in an experimental bridge model using Hilbert Huang transform of transient vibrations. Struct. Control Health Monitor. 20, 1, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Araujo, J. Garca-Palacios, J. Blesa, F. Tirado, E. Romero, A. Samartn, and O. Nieto-Taladriz. 2012. Wireless measurement system for structural health monitoring with high time-synchronization accuracy. IEEE Trans. Instrum. Meas. 61, 3, 801--810.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Beygzadeh, E. Salajegheh, P. Torkzadeh, J. Salajegheh, and S. Naseralavi. 2013. Optimal sensor placement for damage detection based on a new geometrical viewpoint. Int. J. Optim. Civil Engin. 3, 1, 1--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Z. A. Bhuiyan, J. Cao, and G. Wang. 2012a. Deploying wireless sensor networks with fault tolerance for structural health monitoring. In Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS'12). 194--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Z. A. Bhuiyan, J. Cao, G. Wang, and X. Liu. 2012b. Energy-efficient and fault-tolerant structural health monitoring in wireless sensor networks. In Proceeding of the 31st International Symposium on Reliable Distributed Systems (SRDS'12). 301--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Z. A. Bhuiyan, G. Wang, and J. Cao. 2012c. Sensor placement with multiple objectives for structural health monitoring in WSNs. In Proceedings of the 14th IEEE International Conference on High Performance Computing and Communications (HPCC'12). 699--706. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu. 2013a. Energy and bandwidth-efficient wireless sensor networks for monitoring high-frequency events. In Proceedings of the IEEE International Conference on Sensing and Communication, and Networking (SECON'13).Google ScholarGoogle Scholar
  10. M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. WU. 2013b. Local monitoring and maintenance for operational wireless sensor networks. In Proceedings of the 11th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA'13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Bocca, L. Eriksson, A. Mahmood, R. Jntti, and J. Kullaa. 2011. A synchronized wireless sensor network for experimental modal analysis in structural health monitoring. Comput.-Aid. Civil Infrastruct. Engin. 26, 7, 483--499.Google ScholarGoogle ScholarCross RefCross Ref
  12. L. J. Bredin, E. D. Demaine, M. T. Hajiaghayi, and D. Rus. 2010. Deploying sensor networks with guaranteed fault tolerance. IEEE/ACM Trans. Netw. 18, 1, 216--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Cardei, S. Yang, and J. Wu. 2008. Algorithms for fault-tolerant topology in heterogeneous wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 19, 4, 545--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra, M. Pozzi, D. Zonta, and P. Zanon. 2009. Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment. In Proceedings of the ACM International Conference on Information Processing in Sensor Networks (IPSN'09). 277--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. X. Chang, R. Tan, G. Xing, Z. Yuan, C. Lu, Y. Chen, and Y. Yang. 2011. Sensor placement algorithms for fusion-based surveillance networks. IEEE Trans. Parallel Distrib. Syst. 22, 8, 1407--1414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Cheng, C. N. Chuah, and X. Liu. 2004. Energy-aware node placement in wireless sensor networks. In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM'04). 3210--3214.Google ScholarGoogle Scholar
  17. Crossbow Technology. 2007. Imote2 hardware reference manual. http://web.univ-pau.fr/∼cpham/ENSEIGNEMENT/PAUUPPA/RESAM2/DOC/Imote2_Hardware_Reference_Manual.pdf.Google ScholarGoogle Scholar
  18. C. E. Devore. 2013. Damage detection using substructure identification. M.S. thesis, University of Southern California.Google ScholarGoogle Scholar
  19. C. R. Farrar and K. Worden. 2012. Structural Health Monitoring: A Machine Learning Perspective. John Wiley and Sons Ltd, Chichester, UK.Google ScholarGoogle Scholar
  20. O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. 2009. Collection tree protocol. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys'09). 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Hackmann, W. Guo, G. Yan, Z. Sun, C. Lu, and S. Dyke. 2013. Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Hackmann, F. Sun, N. Castaneda, C. Lu, and S. Dyke. 2012. A holistic approach to decentralized structural damage localization using wireless sensor networks. Comput. Comm. 36, 1, 29--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. A. Huffman, 1952. A method for the construction of minimum-redundancy codes. Proc. IRE 40, 9, 1098--1101.Google ScholarGoogle ScholarCross RefCross Ref
  24. H. S. Jang, Mechitov S. Cho JO, J. A. Rice K., S.-H. Sim, H.-J. Jung, C.-B. Yun, F. Billie, J. Spencer, and G. Agha. 2010. Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation. Smart Struct. Syst. 6, 5, 439--459.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Jindal and M. Liu. 2012. Networked computing in wireless sensor networks for structural health monitoring. IEEE/ACM Trans. Netw. 20, 4, 1203--1216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. C. Kammer. 1990. Sensor placement for on-orbit modal identification and correlation of large space structures. In Proceedings of the American Control Conference. 2984--2990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Kashyap, S. Khuller, and M. Shayman. 2011. Relay placement for fault tolerance in wireless networks in higher dimensions. Comput. Geom. Theory Appl. 44, 2011, 206--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon. 2007. Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the ACM International Conference on Information Processing in Sensor Networks (IPSN'07). 254--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. 2011. Robust sensor placements at informative and communication-efficient locations. ACM Trans. Sensor Netw. 7, 4, 1--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Levis. 2006. TinyOS/nesC programming reference manual. www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf.Google ScholarGoogle Scholar
  31. B. LI, Z. Sun, K. Mechitov, C. Lu, S. J. Dyke, G. Agha, and Spencer. B. F. 2013. Realistic case studies of wireless structural control. In Proceedings ACM/IEEE 4th International Conference on CyberPhysical Systems (ICCPS'13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. B. LI, D. Wang, F. Wang, and Y. Q. NI. 2010. High quality sensor placement for SHM systems: Refocusing on application demands. In Proceedings of the Conference on Computer Communications (INFOCOM'10). 650--658. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. L. E. Linderman, J. A. Rice, S. Barot, B. F. Spencer, and J. Bernhard. T. 2010. Characterization of wireless smart sensor performance. Tech. rep .021, Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign, Champaign, Illinois.Google ScholarGoogle Scholar
  34. X. Liu, J. Cao, M. Z. A. Bhuiyan, S. Lai, H. Wu, and G. Wang. 2011a. Fault tolerant WSN-based structural health monitoring. In Proceedings of the IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN). 37--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. X. Liu, J. Cao, S. Lai, C. Yang, H. Wu, and Y. Xu. 2011b. Energy efficient clustering for WSN-based structural health monitoring. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM'11). 2768--2776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. X. Liu, J. Cao, and S. Tang. 2013. Enabling fast and reliable network-wide event-triggered wakeup in WSNS. In Proceedings of the IEEE 24th Real-Time Systems Symposium (RTSS'13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. 2004. The flooding time synchronization protocol. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys'04). 39--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Meo, and G. Zumpano. 2005. On the optimal sensor placement techniques for a bridge structure. Engin. Struct. 27, 10, 1488--1497.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Munir, S. Lin, E. Hoque, S. M. S. Nirjon, J. A. Stankovic, and K. Whitehouse. 2010. Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN'10). 303--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Ni, H. Zhou, K. Chan, and J. Ko. 2008. Modal flexibility analysis of cable-stayed ting kau bridge for damage identification. Comput.-Aid. Civil Infrastruct. Engin. 23, 3, 223--236.Google ScholarGoogle ScholarCross RefCross Ref
  41. Y. Q. Ni, Y. Xia, W. Y. Liao, and J. M. Ko. 2009. Technology innovation in developing the structural health monitoring system for Guangzhou new TV tower. Struct. Control Health Monit. 16, 1, 73--98.Google ScholarGoogle ScholarCross RefCross Ref
  42. P. Nie and B. Li. 2011. A cluster-based data aggregation architecture in WSN for structural health monitoring. In Proceeding of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC'11). 546--552.Google ScholarGoogle Scholar
  43. S. Olariu and I. Stojmenovic. 2006. Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM'06). 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. C. A. Peckens and J. P. Lynch. 2013. Embedded linear classifiers on wireless sensor networks for damage detection. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems.Google ScholarGoogle Scholar
  45. J. A. Rice and B. F. Spencer. 2009. Flexible smart sensor framework for autonomous full-scale structural health monitoring. Tech. rep. 018, Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign, Champaign, Illinois.Google ScholarGoogle Scholar
  46. S.-H. Sima, J. F. Carbonell-Mrquezb, B. F. S., and Joa, H. 2011. Decentralized random decrement technique for efficient data aggregation and system identification in wireless smart sensor networks. Probab. Engin. Mechan. 26, 1, 81--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Singh, M. Woo, and C. Raghavendra. 1998. Power-aware routing in mobile ad hoc networks. In Proceedings of the ACM/IEEE Annual International Conference on Mobile Computing and Networking (MobiCom'98). 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis. 2008. The β-factor: Measuring wireless link burstiness. In Proceedings of the 6th ACM International Conference on Embedded Networked Sensor Systems (SenSys'08). 29--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. STMicroelectronics. 2013. http://www.st.com/internet/com/home/home.jsp.Google ScholarGoogle Scholar
  50. F. Wang, D. Wang, and J. Liu. 2011. Traffic-aware relay node deployment: Maximizing lifetime for data collection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22, 8, 1415--1423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. G. Wang, M. Z. A. Bhuiyan, and Z. Li. 2010. Two-level cooperative and energy-efficient tracking algorithm in wireless sensor networks.Concurr. Comput. Pract. Exper. 22, 4, 518--537. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Q. Wang, M. Hempstead, and W. Yang. 2006. A realistic power consumption model for wireless sensor network devices. In Proceedings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON'06). 286--295.Google ScholarGoogle Scholar
  53. Y.-C. Wang, C.-C. Hu, and Y.-C. Tseng. 2008. Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Trans. Mobile Comput. 7, 2, 162--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. S. Weng, Y. Xia, Y.-L. Xu, and H.-P. Zhu. 2011. Substructure based approach to finite element model updating. Comput. Struct. 89, 2011, 772--782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. Whelan and C. Hietbrink. 2012. Wireless sensor network deployments for structural identification in a tied arch bridge. In NDE/NDT for Highways and Bridges: Structural Materials Technology.Google ScholarGoogle Scholar
  56. S. Wijetunge, U. Gunawardana, and R. Liyanapathirana. 2009.Wireless sensor networks for structural health monitoring: Considerations for communication protocol design. In Proceedings of the IEEE International Conference on Telecommunications (ICT). 694--699.Google ScholarGoogle Scholar
  57. J. Wu. 2005. Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks. Auerba Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Z. Xing and A. Mita. 2012. A substructure approach to local damage detection of shear structure. Struct. Control Health Monit. 19, 2, 309--318.Google ScholarGoogle ScholarCross RefCross Ref
  59. K. Xu, H. Hassanein, G. Takahara, and Q. Wang. 2010. Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Trans. Mobile Comput. 9, 2, 145--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. G. Xue, X. Fang, S. Misra, D. Yang, and J. Zhang. 2012. Two-tiered constrained relay node placement in wireless sensor networks: Computational complexity and efficient approximations. IEEE Trans. Mobile Comput. 11, 8, 1399--1411. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. T.-H. Yi, H.-N. Li, and M. Gu. 2011. Optimal sensor placement for structural health monitoring based on multiple optimization strategies. Struct. Des. Tall Special Buildings 20, 7, 881--900.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Sensor Placement with Multiple Objectives for Structural Health Monitoring

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Sensor Networks
          ACM Transactions on Sensor Networks  Volume 10, Issue 4
          June 2014
          480 pages
          ISSN:1550-4859
          EISSN:1550-4867
          DOI:10.1145/2633905
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 June 2014
          • Revised: 1 September 2013
          • Accepted: 1 September 2013
          • Received: 1 September 2012
          Published in tosn Volume 10, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader