skip to main content
research-article

A survey on concept drift adaptation

Published:01 March 2014Publication History
Skip Abstract Section

Abstract

Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this article, we characterize adaptive learning processes; categorize existing strategies for handling concept drift; overview the most representative, distinct, and popular techniques and algorithms; discuss evaluation methodology of adaptive algorithms; and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners.

Skip Supplemental Material Section

Supplemental Material

References

  1. I. Adae and M. Berthold. 2013. EVE: a framework for event detection. Evolving Syst. 4, 1 (2013), 61--70.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Adomavicius and A. Tuzhilin. 2005. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 17, 6 (2005), 734--749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Aggarwal. 2005. On Change Diagnosis in Evolving Data Streams. IEEE Trans. Knowl. Data Eng. 17, 5 (2005), 587--600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Aggarwal. 2006. On Biased Reservoir Sampling in the Presence of Stream Evolution. In Proc. of the 32nd Int. Conf. on Very Large Data Bases (VLDB). 607--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Agrawal, S. P. Ghosh, T. Imielinski, B. R. Iyer, and A. N. Swami. 1992. An Interval Classifier for Database Mining Applications. In Proc. of the 18th Int. Conf. on Very Large Data Bases (VLDB). Morgan Kaufmann, 560--573. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Agrawal, T. Imielinski, and A. Swami. 1993. Database Mining: A Performance Perspective. IEEE Trans. on Knowl. and Data Eng. 5, 6 (1993), 914--925. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Al-Kateb, L. Byung Suk, and X. Wang. 2007. Adaptive-Size Reservoir Sampling over Data Streams. In Proc. of Int. Conf. on Scientific and Statistical Database Management (SSBDM). IEEE, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Alberg, M. Last, and A. Kandel. 2012. Knowledge Discovery in Data Streams with Regression Tree Methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 1 (2012), 69--78.Google ScholarGoogle ScholarCross RefCross Ref
  9. H. H. Ang, V. Gopalkrishnan, I. Zliobaite, M. Pechenizkiy, and S. C. H. Hoi. 2013. Predictive Handling of Asynchronous Concept Drifts in Distributed Environments. IEEE Trans. on Knowl. and Data Eng. 25, 10 (2013), 2343--2355. DOI:http://dx.doi.org/10.1109/TKDE.2012.172 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. 2002. Models and Issues in Data Stream Systems. In Proc. of the 21st SIGMOD-SIGACT-SIGART Symp. on Princ. of Database Syst. (PODS). ACM, New York, NY, 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. H. Bach and M. A. Maloof. 2008. Paired Learners for Concept Drift. In Proc. of the 8th IEEE Int. Conf. on Data Mining (ICDM). IEEE, 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. Bache and M. Lichman. 2013. UCI Machine Learning Repository. Technical Report. University of California, Irvine. http://archive.ics.uci.edu/ml.Google ScholarGoogle Scholar
  13. M. Basseville and I. Nikiforov. 1993. Detection of Abrupt Changes - Theory and Application. online, France. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. J. Bessa, V. Miranda, and J. Gama. 2009. Entropy and Correntropy against Minimum Square Error in Off-Line and On-Line 3-day ahead Wind Power Forecasting. IEEE Trans. Power Syst. 24, 4 (2009), 1657--1666.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Bifet and E. Frank. 2010. Sentiment Knowledge Discovery in Twitter Streaming Data. In Proc. of the 13th Int. Conf. on Discovery Science (DS). Springer-Verlag, Berlin, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Bifet and R. Gavalda. 2006. Kalman Filters and Adaptive Windows for Learning in Data Streams. In Proc. of the 9th Int. Conf. on Discovery science (DS). Springer-Verlag, Germany, 29--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Bifet and R. Gavalda. 2007. Learning from Time-Changing Data with Adaptive Windowing. In Proc. of SIAM Int. Conf. on Data Mining (SDM). SIAM, 443--448.Google ScholarGoogle Scholar
  18. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. 2011. DATA STREAM MINING: A Practical Approach. Tech. rep. University of Waikato. Retrieved from http://heanet.dl.sourceforge.net/project/moa-datastream/documentation/StreamMining.pdf.Google ScholarGoogle Scholar
  19. A. Bifet, G. Holmes, and B. Pfahringer. 2010. Leveraging Bagging for Evolving Data Streams. In Proc. of the Eur. Conf. on Mach. Learn. and Knowledge Discovery in Databases (ECMLPKDD). Springer-Verlag, Berlin, 135--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. 2010. Fast Perceptron Decision Tree Learning from Evolving Data Streams. In Proc. of the 14th PA Conf. on Knowl. Discov. and Data Mining. Springer-Verlag, Berlin, 299--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda. 2009. New ensemble methods for evolving data streams. In Proc. of the Int. Conf. on Knowl. Discov. and Data Mining. ACM, USA, 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Bifet, G. Holmes, B. Pfahringer, J. Read, P. Kranen, H. Kremer, T. Jansen, and T. Seidl. 2011. MOA: A Real-Time Analytics Open Source Framework. In Proc. Eur. Conf. on Mach. Learn. and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD). Springer-Verlag, Berlin, 617--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Billsus and M. J. Pazzani. 2000. User Modeling for Adaptive News Access. User Modeling and User-Adapted Interaction 10, 2--3 (2000), 147--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Blum. 1997. Empirical Support for Winnow and Weighted-MajorityAlgorithms: Results on a Calendar Scheduling Domain. Mach. Learn. 26, 1 (1997), 5--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez. 2013. Recommender Systems Survey. Know.-Based Syst. 46 (2013), 109--132. DOI:http://dx.doi.org/10.1016/j.knosys.2013.03.012 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. P. J. C. Bose, W. M. P. van der Aalst, I. Zliobaite, and M. Pechenizkiy. 2014. Dealing with Concept Drift in Process Mining. IEEE Trans. Neur. Net. and Lear. Syst. 25, 1, 154--171.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Bouchachia. 2011a. Fuzzy Classification in Dynamic Environments. Soft Comput. 15, 5 (2011), 1009--1022. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Bouchachia. 2011b. Incremental Learning with Multi-Level Adaptation. Neurocomp. 74, 11 (2011), 1785--1799. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Bouchachia, M. Prossegger, and H. Duman. 2010. Semi-Supervised Incremental Learning. In Proc. of the IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE). IEEE, 1--6.Google ScholarGoogle Scholar
  30. A. Bouchachia and C. Vanaret. 2013. GT2FC: An Online Growing Interval Type-2 Self-Learning Fuzzy Classifier. IEEE Trans. Fuzzy Syst. In press. DOI:http://dx.doi.org/10.1109/TFUZZ.2013.2279554Google ScholarGoogle Scholar
  31. L. Breiman. 1999. Pasting Small Votes for Classification in Large Databases and On-Line. Mach. Learn. 36 (1999), 85--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Breiman and others. 1984. Classification and Regression Trees. Chapman & Hall, New York.Google ScholarGoogle Scholar
  33. J. Bremnes. 2004. Probabilistic Wind Power Forecasts Using Local Quantile Regression. Wind Energy 7, 1 (2004), 47--54.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Carmona and R. Gavaldà. 2012. Online Techniques for Dealing with Concept Drift in Process Mining. In Proc. 11th Int. Symp. Advances in Intelligent Data Analysis XI. Springer, Berlin, 90--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Carmona-Cejudo, M. Baena-Garcia, J. del Campo-Avila, R. Bueno, and A. Bifet. 2010. GNUsmail: Open Framework for On-line Email Classification. In Proc. of the 19th Eur. Conf. on Art. Intell. (ECAI). IOS Press, The Netherlands, 1141--1142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. A. Carpenter, S. Grossberg, and J. H. Reynolds. 1991a. ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network. Neural Networks 4 (1991), 565--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. G. Carpenter, S. Grossberg, and D. Rosen. 1991b. Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4, 6 (1991), 759--771. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. V. Carvalho and W. Cohen. 2006. Single-Pass Online Learning: Performance, Voting Schemes and Online Feature Selection. In Proc. of the 12th ACM SIGKDD Int. Conf. on Knowl. Disc. and Data Mining (KDD). ACM, 548--553. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. Castillo, J. Gama, and A. Breda. 2003. Adaptive Bayes for a Student Modeling Prediction Task Based on Learning Styles. In Proc. of the 9th Int. Conf. on User Modeling (UM). Springer, Berlin, 328--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. N. Cesa-Bianchi and G. Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly Detection: A Survey. ACM Comput. Surv. 41, 3 (2009), 15:1--15:58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. F. Chu and C. Zaniolo. 2004. Fast and Light Boosting for Adaptive Mining of Data Streams. In Proc. of the 5th Pac.-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD). Springer-Verlag, Berlin, 282--292.Google ScholarGoogle Scholar
  43. T. Dasu, Sh. Krishnan, S. Venkatasubramanian, and K. Yi. 2006. An Information-Theoretic Approach to Detecting Changes in Multi-Dimensional Data Streams. In Proc. of the 38th Symp. on the Interface of Statistics, Computing Science, and Applications.Google ScholarGoogle Scholar
  44. M. Datar, A. Gionis, P. Indyk, and R. Motwani. 2002. Maintaining Stream Statistics over Sliding Windows. SIAM J. Comput. 31, 6 (2002), 1794--1813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. 2005. A Case-based Technique for Tracking Concept Drift in Spam filtering. Knowledge-Based Sys. 18, 4--5 (2005), 187--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. J. Demsar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7 (2006), 1--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. P. Domingos and G. f. Hulten. 2000. Mining High-Speed Data Streams. In Proc. of the 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). ACM, 71--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. Dries and U. Ruckert. 2009. Adaptive Concept Drift Detection. Stat. Anal. Data Min. 2, 5--6 (2009), 311--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. O. Duda, P. E. Hart, and D. G. Stork. 2001. Pattern Classification. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. C. W. Dunnett. 1955. A Multiple Comparison Procedure for Comparing Several Treatments with a Control. J. Am. Statist. Assoc. 50 (1955), 1096--1121. Issue 272.Google ScholarGoogle ScholarCross RefCross Ref
  51. P. Efraimidis and P. Spirakis. 2006. Weighted Random Sampling with a Reservoir. Inf. Proc. Lett. 97, 5 (2006), 181--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. R. Elwell and R. Polikar. 2011. Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Trans. on Neural Networks 22, 10 (2011), 1517--1531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. Fern and R. Givan. 2003. Online Ensemble Learning: An Empirical Study. Mach. Learn. 53, 1--2 (2003), 71--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. G. Forman. 2006. Tackling concept drift by temporal inductive transfer. In Proc. of the 29th Int. ACM SIGIR Conf. on Research and Development in Inf. Retrieval (SIGIR). ACM, USA, 252--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. R. M. French. 1994. Catastrophic Forgetting in Connectionist Networks: Causes, Consequences and Solutions. Trends Cognit. Sciences 3, 4 (1994), 128--135.Google ScholarGoogle ScholarCross RefCross Ref
  56. M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. 2005. Mining Data Streams: A Review. SIGMOD Rec. 34, 2 (June 2005), 18--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. J. Gama. 2010. Knowledge Discovery from Data Streams. Chapman & Hall/CRC, London. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. J. Gama, R. Fernandes, and R. Rocha. 2006. Decision Trees for Mining Data Streams. Intelligent Data Analysis 10, 1 (2006), 23--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. J. Gama and P. Kosina. 2011. Learning about the Learning Process. In Proc. of the 10th Int. Conf. on Advances in Intelligent Data Analysis (IDA). Springer, Berlin, 162--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. Gama, P. Medas, G. Castillo, and P. Rodrigues. 2004. Learning with Drift Detection. In Proc. of the 17th Brazilian Symp. on Artif. Intell. (SBIA). Springer, Berlin, 286--295.Google ScholarGoogle Scholar
  61. J. Gama, R. Sebastião, and P. P. Rodrigues. 2013. On evaluating stream learning algorithms. Mach. Learn. 90, 3 (2013), 317--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. Gantz and D. Reinsel. 2012. IDC: The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. (December 2012).Google ScholarGoogle Scholar
  63. J. Gao, W. Fan, J. Han, and P. S. Yu. 2007. A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions. In Proc. of the 7th SIAM Int. Conf. on Data Mining (SDM). SIAM, USA.Google ScholarGoogle Scholar
  64. J. Gehrke, R. Ramakrishnan, and V. Ganti. 2000. RainForest—A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowl. Discovery 4 (2000), 127--162. Issue 2--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. C. Giraud-Carrier. 2000. A note on the utility of incremental learning. AI Commun. 13, 4 (Dec. 2000), 215--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. B. Gomes, E. M. Ruiz, and P. A. C. Sousa. 2011. Learning Recurring Concepts from Data Streams with a Context-Aware Ensemble. In Proc. of the ACM Symp. on Appl. Comp. (SAC). ACM, USA, 994--999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. A.-M. Grisogono. 2006. The Implications of Complex Adaptive Systems Theory for C2. In State of the Art State of the Practice, Vol. CCRTS. Defense Technical Information Center.Google ScholarGoogle Scholar
  68. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11, 1 (2009), 10--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. Harries. 1999. SPLICE-2 Comparative Evaluation: Electricity Pricing. Tech. rep. South Wales Univ.Google ScholarGoogle Scholar
  70. M. Harries, C. Sammut, and K. Horn. 1998. Extracting Hidden Context. Machine Learning 32 (1998), 101--126. Issue 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. D. P. Helmbold and P. M. Long. 1994. Tracking Drifting Concepts By Minimizing Disagreements. Mach. Learn. 14, 1 (Jan. 1994), 27--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. Herbster and M. Warmuth. 1998. Tracking the Best Expert. Mach. Learn. 32, 2 (1998), 151--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. G. Hulten, L. Spencer, and P. Domingos. 2001. Mining Time-Changing Data Streams. In Proc. of the 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). ACM, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. E. Ikonomovska, J. Gama, and S. Dzeroski. 2011. Learning Model Trees from Evolving Data Streams. Data Mining Knowl.e Discovery 23, 1 (2011), 128--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. T. Joachims. 2000. Estimating the Generalization Performance of an SVM Efficiently. In Proc. of the 17th Int. Conf. on Mach. Learn. (ICML). Morgan Kaufmann Publishers, USA, 431--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. P. Kadlec, R. Grbic, and B. Gabrys. 2011. Review of Adaptation Mechanisms for Data-Driven Soft Sensors. Comput. Chem. Engin. 35, 1 (2011), 1--24.Google ScholarGoogle ScholarCross RefCross Ref
  77. I. Katakis, G. Tsoumakas, and I. Vlahavas. 2010. Tracking Recurring Contexts Using Ensemble Classifiers: An Application to Email Filtering. Knowl. Inf. Syst. 22, 3 (2010), 371--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. M. G. Kelly, D. J. Hand, and N. M. Adams. 1999. The Impact of Changing Populations on Classifier Performance. In Proc. of the 5th ACM SIGKDD Int. Conf. on Knowl. Disc. and Dat. Mining (KDD). ACM, 367--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. D. Kifer, Sh. Ben-David, and J. Gehrke. 2004. Detecting Change in Data Streams. In Proc. of the 13th Int. Conf. on Very Large Data Bases (VLDB). VLDB Endowment, 180--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. R. Klinkenberg. 2003. Predicting Phases in Business Cycles Under Concept Drift. In Proc. of the Ann. Workshop on Machine Learning of the National German Computer Science Society (LLWA). LLWA, Germany, 3--10.Google ScholarGoogle Scholar
  81. R. Klinkenberg. 2004. Learning Drifting Concepts: Example Selection vs. Example Weighting. Intelligent Data Analysis 8, 3 (2004), 281--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. R. Klinkenberg and Th. Joachims. 2000. Detecting Concept Drift with Support Vector Machines. In Proc. of the 17th Int. Conf. on Machine Learning (ICML). Morgan Kaufmann, 487--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. R. Klinkenberg and I. Renz. 1998. Adaptive Information Filtering: Learning in the Presence of Concept Drifts. In Workshop Notes of the ICML/AAAI-98 Workshop on Learning for Text Categorization. AAAI, 33--40.Google ScholarGoogle Scholar
  84. J. Kolter and M. Maloof. 2003. Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift. In Proc. of the 3rd IEEE Int. Conf. on Data Mining (ICDM). IEEE, 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. J. Kolter and M. Maloof. 2005. Using Additive Expert Ensembles to Cope with Concept Drift. In Proc. of the 22th Int. Conf. on Machine Learning (ICML). ACM, 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. J. Kolter and M. Maloof. 2007. Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts. Journal of Machine Learning Research 8 (2007), 2755--2790. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Y. Koren. 2010. Collaborative Filtering with Temporal Dynamics. Commun. ACM 53, 4 (2010), 89--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. P. Kosina, J. Gama, and R. Sebastiao. 2010. Drift Severity Metric. In Proc. of the 19th Eur. Conf. on Artificial Intelligence (ECAI). IOS Press, The Netherlands, 1119--1120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. I. Koychev. 2000. Gradual Forgetting for Adaptation to Concept Drift. In Proc. of ECAI Workshop on Current Issues in Spatio-Temporal Reasoning. ECAI, Germany, 101--106.Google ScholarGoogle Scholar
  90. I. Koychev. 2002. Tracking Changing User Interests through Prior-Learning of Context. In Proc. of the 2nd Int. Conf. on Adaptive Hypermedia and Adaptive Web-Based Systems. Springer, Berlin, 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. M. Kukar. 2003. Drifting concepts as hidden factors in clinical studies. In Proc. of AIME 2003, 9th Conference on Artificial Intelligence in Medicine in Europe. Springer, Berlin, 355--364.Google ScholarGoogle ScholarCross RefCross Ref
  92. L. Kuncheva. 2008. Classifier Ensembles for Detecting Concept Change in streaming data: Overview and perspectives. In Proc. of the 2nd Workshop SUEMA 2008. SUEMA, online.Google ScholarGoogle Scholar
  93. L. Kuncheva and I. Zliobaite. 2009. On the Window Size for Classification in Changing Environments. Intelligent Data Analysis 13, 6 (2009), 861--872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. L. I. Kuncheva. 2004. Classifier ensembles for changing environments. In Proc. of the 5th Int. Worksh. on Multiple Classifier Systems (MCS). Springer, Berlin, 1--15.Google ScholarGoogle Scholar
  95. L. I. Kuncheva. 2009. Using Control Charts for Detecting Concept Change in Streaming Data. Tech. rep. BCS-TR-001-2009. School of Computer Science, Bangor University, UK. Retrieved from http://www.bangor.ac.uk/∼mas00a/papers/lkTR09.pdf.Google ScholarGoogle Scholar
  96. L. I. Kuncheva. 2013. Change Detection in Streaming Multivariate Data Using Likelihood Detectors. IEEE Transactions on Knowledge and Data Engineering 25, 5 (2013), 1175--1180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. L. I. Kuncheva and C. O. Plumpton. 2008. Adaptive Learning Rate for Online Linear Discriminant Classifiers. In Proc. of Int. Worksh. on Structural and Syntactic Pattern Recognition (SSPR). Springer, Berlin, 510--519. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. C. Lanquillon. 2002. Enhancing Text Classification to Improve Information Filtering. Künstliche Intelligenz, 16, 2 (2002), 37--38.Google ScholarGoogle Scholar
  99. M. M. Lazarescu, S. Venkatesh, and H. H. Bui. 2004. Using Multiple Windows to Track Concept Drift. Intelligent Data Analysis 8, 1 (2004), 29--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. M. Leeuwen and A. Siebes. 2008. StreamKrimp: Detecting Change in Data Streams. In Proc. of the Eur. Conf. on Mach. Learn. and Knowledge Discovery in Databases (ECMLPKDD). Springer, Berlin, 672--687. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. P. Lindstrom, S. J. Delany, and B. Mac Namee. 2010. Handling Concept Drift in a Text Data Stream Constrained by High Labelling Cost. In Proc. of the 23rd Int. Florida Art. Intell. Research Society Conf. FLAIRS.Google ScholarGoogle Scholar
  102. N. Littlestone. 1987. Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm. Machine Learning 2, 4 (1987), 285--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. N. Littlestone and M. Warmuth. 1994. The Weighted Majority Algorithm. Inf. Comput. 108, 2 (1994), 212--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. M. Maloof and R. Michalski. 2000. Selecting Examples for Partial Memory Learning. Machine Learning 41 (2000), 27--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. M. Maloof and R. Michalski. 2004. Incremental Learning with Partial Instance Memory. Artificial Intelligence 154 (2004), 95--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. M. A. Maloof. 2010. The AQ Methods for Concept Drift. In Advances in Machine Learning I: Dedicated to the Memory of Professor Ryszard S. Michalski. Springer, Berlin, 23--47.Google ScholarGoogle Scholar
  107. M. A. Maloof and R. S. Michalski. 1995. A Method for Partial-Memory Incremental Learning and Its Application to Computer Intrusion Detection. In Proc. of the 7th IEEE Int. Conf. on Tools with Artif. Intell. IEEE, 392--397. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. M. Markou and S. Singh. 2003. Novelty Detection: A Review—Part 1: Statistical Approaches. Signal Processing 83 (2003), 2481--2497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. 2011. Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints. IEEE TKDE 23, 6 (2011), 859--874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Q. McNemar. 1947. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika 12, 2 (1947), 153--157.Google ScholarGoogle ScholarCross RefCross Ref
  111. M. Mehta, R. Agrawal, and J. Rissanen. 1996. SLIQ: A Fast Scalable Classifier for Data Mining. In Proc. of the 5th Int. Conf. on Extending Database Technol.: Advances in Database Technol. (EDBT). Springer, Berlin, 18--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. L. Minku, A. White, and X. Yao. 2010. The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering 22 (May 2010), 730--742. Issue 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. L. Minku and X. Yao. 2011. DDD: A New Ensemble Approach for Dealing with Concept Drift. IEEE Transactions on Knowledge and Data Engineering 24, 4 (2011), 619--633. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann. 2009. Wind Power Forecasting: State-of-the-Art 2009. Tech. rep. ANL/DIS-10-1. Argonne National Laboratory.Google ScholarGoogle Scholar
  115. J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodriguez, N. V. Chawla, and F. Herrera. 2012. A Unifying View on Dataset Shift in Classification. Pattern Recognition 45, 1 (2012), 521--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. 2004. Test of Page-Hinkley, an Approach for Fault Detection in an Agro-Alimentary Production System. In Proc. of the Asian Control Conference. IEEE, 815--818.Google ScholarGoogle Scholar
  117. S. Muthukrishnan, E. van den Berg, and Y. Wu. 2007. Sequential Change Detection on Data Streams. In Proc. of the 7th IEEE Int. Conf. on Data Mining (ICDMW). IEEE, 551--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. W. Ng and M. Dash. 2008. A Test Paradigm for Detecting Changes in Transactional Data Streams. In Proc. of the 13th Int. Conf. on Database Systems for Advanced Applications (DASFAA). Springer, Berlin, 204--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. K. Nishida and K. Yamauchi. 2007. Detecting Concept Drift Using Statistical Testing. In Proc. of the 10th International Conference on Discovery Science (DS'07). Springer-Verlag, Berlin, 264--269. http://dl.acm.org/citation.cfm?id=1778942.1778972 Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. N. Oza. 2001. Online Ensemble Learning. Ph.D. Dissertation. University of California Berkeley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. E. S. Page. 1954. Continuous Inspection Schemes. Biometrika 41, 1/2 (1954), 100--115.Google ScholarGoogle ScholarCross RefCross Ref
  122. M. Pechenizkiy, J. Bakker, I. Zliobaite, A. Ivannikov, and T. Kärkkäinen. 2009. Online Mass Flow Prediction in CFB Boilers with Explicit Detection of Sudden Concept Drift. SIGKDD Explor. 11, 2 (2009), 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. R. Polikar, L. Udpa, S. Udpa, and V. Honavar. 2001. Learn++: An Incremental Learning Algorithm for Supervised Neural Networks. IEEE Trans. on Syst., Man and Cyber. C 31 (2001), 497--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. F. Rosenblatt. 1958. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review 65, 6 (1958), 386--408.Google ScholarGoogle ScholarCross RefCross Ref
  125. G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand. 2012. Exponentially Weighted Moving Average Charts for Detecting Concept Drift. Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. F. Rusu and A. Dobra. 2009. Sketching Sampled Data Streams. In Proc. of the 2009 IEEE Int. Conf. on Data Eng. (ICDE). IEEE, 381--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. M. Salganicoff. 1993. Density-Adaptive Learning and Forgetting. In Proc. of the Int. Conf. on Mach. Learn. (ICML). Morgan Kaufmann, 276--283.Google ScholarGoogle ScholarCross RefCross Ref
  128. M. Salganicoff. 1997. Tolerating Concept and Sampling Shift in Lazy Learning Using Prediction Error Context Switching. Artificial Intelligence Review 11, 1--5 (1997), 133--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. J. Schlimmer and R. Granger. 1986. Incremental Learning from Noisy Data. Mach. Learn. 1, 3 (1986), 317--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. M. Scholz and R. Klinkenberg. 2007. Boosting Classifiers for Drifting Concepts. Intell. Data Anal. 11, 1 (2007), 3--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. R. Sebastião and J. Gama. 2007. Change Detection in Learning Histograms from Data Streams. In Progress in Artificial Intelligence: Proc. of the Portuguese Conf. on Art. Intell. Springer, Berlin, 112--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. J. C. Shafer, R. Agrawal, and M. Mehta. 1996. SPRINT: A Scalable Parallel Classifier for Data Mining. In Proc. of the 22th Int. Conf. on Very Large Data Bases (VLDB). Morgan Kaufmann, 544--555. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. A. Shiryaev. 2009. On Stochastic Models and Optimal Methods in the Quickest Detection Problems. Theory Probab. Appl. 53, 3 (2009), 385--401.Google ScholarGoogle ScholarCross RefCross Ref
  134. W. Street and Y. Kim. 2001. A Streaming Ensemble Algorithm SEA for Large-Scale Classification. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). ACM, 377--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. N. Syed, H. Liu, and K. Sung. 1999. Handling Concept Drifts in Incremental Learning with Support Vector Machines. In Proc. of the 5th ACM SIGKDD Int. Conf. on Knowl. Disc. and Data Mining (KDD). ACM, 317--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. A. Tartakovsky and G. Moustakides. 2010. State-of-the-Art in Bayesian Changepoint Detection. Sequential Anal. 29 (2010), 125--145.Google ScholarGoogle ScholarCross RefCross Ref
  137. S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L. Jendrossek, et al. 2006. Stanley: The Robot That Won the Darpa Challenge. J. Field Robot. 23, 9 (2006), 661--692. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. A. Tsymbal. 2004. The Problem of Concept Drift: Definitions and Related Work. Tech. rep. Department of Computer Science, Trinity College, Dublin.Google ScholarGoogle Scholar
  139. A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. 2006. Handling Local Concept Drift with Dynamic Integration of Classifiers: Domain of Antibiotic Resistance in Nosocomial Infections. In Proc. of 19th IEEE Int. Symp. on Computer-Based Medical Syst. (CBMS). IEEE, 679--684. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. W. M. P. van der Aalst. 2011. Process Mining—Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin. I--XVI, 1--352 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. W. M. P. van der Aalst. 2012. Process Mining. Commun. ACM 55, 8 (2012), 76--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. J. Vitter. 1985. Random Sampling with a Reservoir. ACM Trans. Math. Softw. 11, 1 (1985), 37--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. P. Vorburger and A. Bernstein. 2006. Entropy-based Concept Shift Detection. In Proc. of the 6th Int. Conf. on Data Mining (ICDM). IEEE, 1113--1118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. V. Vovk. 1998. A Game of Prediction with Expert Advice. J. Comput. Syst. Sci. 56, 2 (1998), 153--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. A. Wald. 1947. Sequential Analysis. John Wiley and Sons.Google ScholarGoogle Scholar
  146. H. Wang, W. Fan, P. Yu, and J. Han. 2003. Mining Concept-Drifting Data Streams Using Ensemble Classifiers. In Proc. of the 9th ACM SIGKDD Int. Conf. on Knowl. Disc. and Data Mining (KDD). ACM, 226--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. G. Widmer. 1997. Tracking Context Changes through Meta-Learning. Mach. Learn. 27, 3 (June 1997), 259--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. G. Widmer and M. Kubat. 1993. Effective Learning in Dynamic Environments by Explicit Context Tracking. In Proc. of the Eur. Conf. on Mach. Learn. (ECML). Springer, Berlin, 227--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. G. Widmer and M. Kubat. 1996. Learning in the Presence of Concept Drift and Hidden Contexts. Mach. Learn. 23, 1 (1996), 69--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Y. Yang, X. Wu, and X. Zhu. 2006. Mining in Anticipation for Concept Change: Proactive-Reactive Prediction in Data Streams. Data Mining and Knowledge Discovery 13, 3 (2006), 261--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. van den Hengel. 2012. Robust Tracking with Weighted Online Structured Learning. In Proc. of the 12th Eur. Conf. on Computer Vision (ECCV). Springer, Berlin, 158--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. G. Zeira, O. Maimon, M. Last, and L. Rokach. 2004. Change Detection in Classification Models Induced from Time-Series Data. In Data Mining in Time Series Databases. Vol. 57. World Scientific, Singapore, 101--125.Google ScholarGoogle Scholar
  153. P. Zhang, X. Zhu, and Y. Shi. 2008. Categorizing and Mining Concept Drifting Data Streams. In Proc. of the 14th ACM SIGKDD Int. Conf. on Knowl. Disc. and Data Mining (KDD). ACM, 812--820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. Z. Zhang and J. Zhou. 2010. Transfer Estimation of Evolving Class Priors in Data Stream Classification. Pattern Recogn. 43, 9 (2010), 3151--3161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. P. Zhao, S. Hoi, R. Jin, and T. Yang. 2011. Online AUC Maximization. In Proc. of the 28th Int. Conf. on Machine Learning (ICML). Omnipress, 233--240.Google ScholarGoogle Scholar
  156. I. Zliobaite. 2009. Learning under Concept Drift: An Overview. Tech. rep. Vilnius University.Google ScholarGoogle Scholar
  157. I. Zliobaite. 2011a. Combining Similarity in Time and Space for Training Set Formation under Concept Drift. Intell. Data Anal. 15, 4 (2011), 589--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. I. Zliobaite. 2011b. Controlled Permutations for Testing Adaptive Classifiers. In Proc. of the 14th Int. Conf. on Discovery Science (DS). Springer, Berlin, 365--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. I. Zliobaite, J. Bakker, and M. Pechenizkiy. 2012a. Beating the Baseline Prediction in Food Sales: How Intelligent an Intelligent Predictor Is? Expert Syst. Appl. 39, 1 (2012), 806--815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. I. Zliobaite, A. Bifet, M. M. Gaber, B. Gabrys, J. Gama, L. L. Minku, and K. Musial. 2012b. Next Challenges for Adaptive Learning Systems. SIGKDD Explorations 14, 1 (2012), 48--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. I. Zliobaite, A. Bifet, B. Pfahringer, and G Holmes. 2014. Active Learning with Drifting Streaming Data. IEEE Trans. Neural Networks Learn. Syst. 25, 1, 27--39.Google ScholarGoogle ScholarCross RefCross Ref
  162. I. Zliobaite and L. Kuncheva. 2009. Determining the Training Window for Small Sample Size Classification with Concept Drift. In Proc. of IEEE Int. Conf. on Data Mining Workshops (ICDMW). IEEE, 447--452. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A survey on concept drift adaptation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 46, Issue 4
      April 2014
      463 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/2597757
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 March 2014
      • Accepted: 1 October 2013
      • Revised: 1 August 2013
      • Received: 1 February 2012
      Published in csur Volume 46, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader