skip to main content
research-article

Exponential integrators for stiff elastodynamic problems

Published:07 February 2014Publication History
Skip Abstract Section

Abstract

We investigate the application of exponential integrators to stiff elastodynamic problems governed by second-order differential equations. Classical explicit numerical integration schemes have the shortcoming that the stepsizes are limited by the highest frequency that occurs within the solution spectrum of the governing equations, while implicit methods suffer from an inevitable and mostly uncontrollable artificial viscosity that often leads to a nonphysical behavior. In order to overcome these specific detriments, we devise an appropriate class of exponential integrators that solve the stiff part of the governing equations of motion by employing a closed-form solution. As a consequence, we are able to handle up to three orders of magnitude larger time-steps as with conventional implicit integrators and at the same time achieve a tremendous increase in the overall long-term stability due to a strict energy conservation. The advantageous behavior of our approach is demonstrated on a broad spectrum of complex deformable models like fibers, textiles, and solids, including collision response, friction, and damping.

Skip Supplemental Material Section

Supplemental Material

a7-sidebyside.mp4

mp4

12.1 MB

References

  1. Fabian Aiteanu, Patrick Degener, and Reinhard Klein. 2010. Efficient non-linear editing of large point clouds. In Proceedings of the International Conference on Computer Graphics, Visualization and Computer Vision (WSCG'10).Google ScholarGoogle Scholar
  2. Hans C. Andersen. 1983. A velocity version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24--34.Google ScholarGoogle ScholarCross RefCross Ref
  3. Stuart S. Antman. 1995. Nonlinear problems of elasticity. Appl. Math. Sci. 107.Google ScholarGoogle Scholar
  4. W. E. Arnoldi. 1951. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17--29.Google ScholarGoogle ScholarCross RefCross Ref
  5. David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'98). ACM Press, New York, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Belytschko and B. Hsieh. 1979. Application of higher order corotational stretch theories to nonlinear finite element analysis. Comput. Struct. 10, 175--182.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'08). ACM Press, New York, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David Brydon, John Pearson, and Michael Marder. 1998. Solving stiff differential equations with the method of patches. J. Comput. Phys. 144, 280--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Certaine. 1960. The solution of ordinary differential equations with large time constants. In Mathematical Methods for Digital Computers, Wiley, New York, 128--132.Google ScholarGoogle Scholar
  10. C. F. Curtiss and J. O. Hirschfelder. 1952. Integration of stiff equations. Proc. Nat. Acad. Sci. Unit. Stat. Amer. 38, 3, 235--243.Google ScholarGoogle ScholarCross RefCross Ref
  11. P. Deuflhard. 1979. A study of extrapolation methods based on multi-step schemes without parasititc solutions. J. App. Math. Phys. 30, 177--189.Google ScholarGoogle Scholar
  12. Bernd Eberhardt, Olaf Etzmuss, and Michael Hauth. 2000. Implicit-explicit schemes for fast animation with particle systems. In Proceedings of the 11th EuroGraphics Workshop on Computer Animation and Simulation (EGCAS'00). Springer, New York, 137--151.Google ScholarGoogle ScholarCross RefCross Ref
  13. O. Etzmuss, M. Keckeisen, and W. Strasser. 2003. A fast finite element solution for cloth modelling. In Proceedings of the Pacific Conference on Computer Graphics and Applications. 244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Friedli. 1978. Verallgemeinerte Runge-Kutta verfahren zur losung steifer differentialgleichungen. In Lecture Notes in Mathematics, vol. 631, 214--219.Google ScholarGoogle Scholar
  15. B. García-Archilla, J. M. Sanz-Serna, and R. D. Skeel. 1999. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930--963. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Walter Gautschi. 1961. Numerical integration of ordinary differential equations based on trigonometric polynomials. Numerische Mathematik 3, 381--397. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient simulation of inextensible cloth. In ACM SIGGRAPH Papers. ACM Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Michael Griebel, Stephan Knapek, and Gerhard Zumbusch. 2007. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Volker Grimm and Marlis Hochbruck. 2006. Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A: Math. Gen. 39, 5495--5507.Google ScholarGoogle ScholarCross RefCross Ref
  20. Ernst Hairer and Christian Lubich. 2000. Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Hairer, C. Lubich, and G. Wanner. 2006. Geometric Numerical Integration: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer Series in Computational Mathematics.Google ScholarGoogle Scholar
  22. Michael Hauth and Olaf Etzmuss. 2001. A high performance solver for the animation of deformable objects using advanced numerical methods. Comput. Graph. Forum 20, 319--328.Google ScholarGoogle ScholarCross RefCross Ref
  23. Joseph Hersch. 1958. Contribution a la methode des equations aux differences. Zeitschrift Angewandte Mathematik Physik 9, 129--180.Google ScholarGoogle ScholarCross RefCross Ref
  24. Marlis Hochbruck and Christian Lubich. 1997. On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911--1925. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Marlis Hochbruck and Christian Lubich. 1999. A gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 3, 403-426.Google ScholarGoogle ScholarCross RefCross Ref
  26. Marlis Hochbruck, C. Lubich, and H. Selfhofer. 1998. Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552--1574. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marlis Hochbruck and Alexander Ostermann. 2010. Exponential integrators. Acta Numerica 19, 209--286.Google ScholarGoogle ScholarCross RefCross Ref
  28. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM SIGGRAPH/EuroGraphics Symposium on Computer Animation. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Firas Khatib, Frank DiMaio, Seth Cooper, Maciej Kazmierczyk, Miroslaw Gilski, Szymon Krzywda, Helena Zabranska, Iva Pichova, James Thompson, Zoran Popović, Mariusz Jaskolski, and David Baker. 2011. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat. Struct. Molec. Biol. 18, 10, 1175--1177.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Lagrange. 1809. Supplement au Memoire sur la Theorie Generale de la Variation des Constantes Arbitraires, dans Tous les Problemes de la Mecanique. Memoires de la Classe des Sciences Mathematiques et Physiques.Google ScholarGoogle Scholar
  31. J. Lawson. 1967. Generalized runge-kutta processes for stable systems with large lipschitz constants. SIAM J. Numer. Anal. 4, 370--372.Google ScholarGoogle ScholarCross RefCross Ref
  32. R. McLachlan and D. O'Neale. 2007. Implicit-explicit variational integration of highly oscillatory problems. Preprint N107052-HOP.Google ScholarGoogle Scholar
  33. Cleve Moler and Charles Van Loan. 1978. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801--836.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Cleve Moler and Charles Van Loan. 2003. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 1, 3--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cutler. 2002. Stable real-time deformations. In Proceedings of the ACM SIGGRAPH/EuroGraphics Symposium on Computer Animation (SCA'02). ACM Press, New York, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson. 2006. Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Nørsett. 1969. An a-stable modification of the adams-bashforth methods. In Lecture Notes in Mathematics, vol. 109, 214--219.Google ScholarGoogle ScholarCross RefCross Ref
  38. David A. Pope. 1963. An exponential method of numerical integration of ordinary differential equations. Comm. ACM 6, 8, 491--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. RCSB PDB. 2013. RCSB protein data bank. http://www.rcsb.org/pdb/static.do?p=general_information/news_publications/articles/index.html.Google ScholarGoogle Scholar
  40. H. H. Rosenbrock. 1963. Some general implicit processes for the numerical solution of differential equations. Comput. J. 5, 4, 329--330.Google ScholarGoogle ScholarCross RefCross Ref
  41. Y. Saad. 1992. Analysis of some krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. R. Sidje. 1998. Expokit: A software package for computing matrix exponentials. ACM Trans. Math. Softw. 24, 1, 130--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Stanford University. 2013. The stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep/.Google ScholarGoogle Scholar
  44. Ari Stern and Eitan Grinspun. 2009. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model. Simul. 7, 1779--1794.Google ScholarGoogle ScholarCross RefCross Ref
  45. Jonathan Su, Rahul Sheth, and Ronald Fedkiw. 2012. Energy conservation for the simulation of deformable bodies. IEEE Trans. Vis. Comput. Graph. 19, 2, 189--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Mark C. Surles. 1992. An algorithm with linear complexity for interactive, physically-based modeling of large proteins. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'92). ACM Press, New York, 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'87). ACM Press, New York, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. G. Wempner. 1969. Finite elements, finite rotations and small strains of flexible shells. Int. J. Solids Struct. 5, 117--153.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Exponential integrators for stiff elastodynamic problems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader