skip to main content
survey

Probabilistic Complex Event Recognition: A Survey

Authors Info & Claims
Published:26 September 2017Publication History
Skip Abstract Section

Abstract

Complex event recognition (CER) applications exhibit various types of uncertainty, ranging from incomplete and erroneous data streams to imperfect complex event patterns. We review CER techniques that handle, to some extent, uncertainty. We examine techniques based on automata, probabilistic graphical models, and first-order logic, which are the most common ones, and approaches based on Petri nets and grammars, which are less frequently used. Several limitations are identified with respect to the employed languages, their probabilistic models, and their performance, as compared to the purely deterministic cases. Based on those limitations, we highlight promising directions for future work.

References

  1. J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. 2008. Efficient pattern matching over event streams. In Proceedings of SIGMOD. 147--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Albanese, R. Chellappa, N. Cuntoor, V. Moscato, A. Picariello, V. S. Subrahmanian, and O. Udrea. 2010. PADS: A probabilistic activity detection framework for video data. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 12, 2246--2261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Albanese, R. Chellappa, N. P. Cuntoor, V. Moscato, A. Picariello, V. S. Subrahmanian, and O. Udrea. 2008. A constrained probabilistic Petri net framework for human activity detection in video. IEEE Transactions on Multimedia 10, 6, 982--996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Albanese, C. Molinaro, F. Persia, A. Picariello, and V. S. Subrahmanian. 2011. Finding “unexplained” activities in video. In Proceedings of IJCAI. 1628--1634.Google ScholarGoogle Scholar
  5. M. Albanese, V. Moscato, A. Picariello, V. S. Subrahmanian, and O. Udrea. 2007. Detecting stochastically scheduled activities in video. In Proceedings of IJCAI. 1802--1807.Google ScholarGoogle Scholar
  6. James F. Allen. 1983. Maintaining knowledge about temporal intervals. Communications of the ACM 26, 11, 832--843. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. James F. Allen. 1984. Towards a general theory of action and time. Artificial Intelligence 23, 2, 123--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Alexander Artikis, Opher Etzion, Zohar Feldman, and Fabiana Fournier. 2012. Event processing under uncertainty. In Proceedings of DEBS. ACM, New York, NY, 32--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Alexander Artikis, Marek Sergot, and Georgios Paliouras. 2010. A logic programming approach to activity recognition. In Proceedings of EiMM. ACM, New York, NY, 3--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Alexander Artikis, Marek Sergot, and Georgios Paliouras. 2015. An event calculus for event recognition. IEEE Transactions on Knowledge and Data Engineering 27, 4, 895--908. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Alexander Artikis, Anastasios Skarlatidis, François Portet, and Georgios Paliouras. 2012. Logic-based event recognition. Knowledge Engineering Review 27, 4, 469--506.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. 2006. ULDBs: Databases with uncertainty and lineage. In Proceedings of VLDB. 953--964.Google ScholarGoogle Scholar
  13. Hendrik Blockeel and Werner Uwents. 2004. Using neural networks for relational learning. In Proceedings of ICML. 23--28.Google ScholarGoogle Scholar
  14. Matthew Brand, Nuria Oliver, and Alex Pentland. 1997. Coupled hidden Markov models for complex action recognition. In Proceedings of CVPR. IEEE, Los Alamitos, CA, 994--999. Google ScholarGoogle ScholarCross RefCross Ref
  15. William Brendel, Alan Fern, and Sinisa Todorovic. 2011. Probabilistic event logic for interval-based event recognition. In Proceedings of CVPR. IEEE, Los Alamitos, CA, 3329--3336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Maurice Bruynooghe, Broes De Cat, Jochen Drijkoningen, Daan Fierens, Jan Goos, Bernd Gutmann, Angelika Kimmig, et al. 2009. An Exercise With Statistical Relational Learning Systems. Available at https://lirias.kuleuven.be/bitstream/123456789/230569/1/srlGoogle ScholarGoogle Scholar
  17. I. Cervesato and A. Montanari. 2000. A calculus of macro-events: Progress report. In Proceedings of TIME. 47--58. Google ScholarGoogle ScholarCross RefCross Ref
  18. Xu Chuanfei, Lin Shukuan, Wang Lei, and Qiao Jianzhong. 2010. Complex event detection in probabilistic stream. In Proceedings of APWEB. 361--363.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Cugola and A. Margara. 2010. TESLA: A formally defined event specification language. In Proceedings of DEBS. 50--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Cugola and A. Margara. 2011. Processing flows of information: From data stream to complex event processing. ACM Computing Surveys 44, 3, Article No. 15.Google ScholarGoogle Scholar
  21. Gianpaolo Cugola, Alessandro Margara, Matteo Matteucci, and Giordano Tamburrelli. 2014. Introducing uncertainty in complex event processing: Model, implementation, and validation. Computing 97, 2, 103--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Luc De Raedt and Kristian Kersting. 2003. Probabilistic logic learning. ACM SIGKDD Explorations Newsletter 5, 1, 31--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White. 2006. Towards expressive publish/subscribe systems. In Proceedings of EDBT. 627--644. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pedro Domingos and Daniel Lowd. 2009. Markov Logic: An Interface Layer for Artificial Intelligence. Morgan 8 Claypool.Google ScholarGoogle ScholarCross RefCross Ref
  25. Yagil Engel and Opher Etzion. 2011. Towards proactive event-driven computing. In Proceedings of DEBS. 125--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Opher Etzion and Peter Niblett. 2010. Event Processing in Action. Manning Publications, Greenwich, CT.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ronald Fagin. 1996. Combining fuzzy information from multiple systems. In Proceedings of PODS. ACM, New York, NY, 216--226.Google ScholarGoogle Scholar
  28. Lina Fahed, Armelle Brun, and Anne Boyer. 2014. Efficient discovery of episode rules with a minimal antecedent and a distant consequent. In Knowledge Discovery, Knowledge Engineering and Knowledge Management. Springer, 3--18.Google ScholarGoogle Scholar
  29. Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. 2013. Inference and learning in probabilistic logic programs using weighted Boolean formulas. In Proceedings of TPLP. 1--44.Google ScholarGoogle Scholar
  30. Norbert Fuhr and Thomas Rölleke. 1997. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems 15, 1, 32--66.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lajos Jenő Fülöp, árpád Beszédes, Gabriella Tóth, Hunor Demeter, László Vidács, and Lóránt Farkas. 2012. Predictive complex event processing: A conceptual framework for combining complex event processing and predictive analytics. In Proceedings of BCI. ACM, New York, NY. 26--31.Google ScholarGoogle Scholar
  32. Lise Getoor and Ben Taskar. 2007. Introduction to Statistical Relational Learning. MIT Press, Cambridge, MA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matthew L. Ginsberg. 1988. Multivalued logics: A uniform approach to reasoning in artificial intelligence. Computational Intelligence 4, 265--316. Google ScholarGoogle ScholarCross RefCross Ref
  34. Shaogang Gong and Tao Xiang. 2003. Recognition of group activities using dynamic probabilistic networks. In Proceedings of ICCV, Vol. 2. IEEE, Los Alamitos, CA, 742--749.Google ScholarGoogle Scholar
  35. Samitha Herath, Mehrtash Harandi, and Fatih Porikli. 2017. Going deeper into action recognition: A survey. Image and Vision Computing 60, C, 4--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. A. Ivanov and A. F. Bobick. 2000. Recognition of visual activities and interactions by stochastic parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8, 852--872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Manfred Jaeger. 1997. Relational Bayesian networks. In Proceedings of UAI. 266--273.Google ScholarGoogle Scholar
  38. Manfred Jaeger. 2008. Model-theoretic expressivity analysis. In Probabilistic Inductive Logic Programming. Lecture Notes in Computer Science, Vol. 4911. Springer, 325--339. Google ScholarGoogle ScholarCross RefCross Ref
  39. Henry Kautz, Bart Selman, and Yueyen Jiang. 1997. A general stochastic approach to solving problems with hard and soft constraints. In The Satisfiability Problem: Theory and Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 35. American Mathematical Society, 573--586. Google ScholarGoogle ScholarCross RefCross Ref
  40. H. Kawashima, H. Kitagawa, and X. Li. 2010. Complex event processing over uncertain data streams. In Proceedings of 3PGCIC. 521--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Kristian Kersting, Luc De Raedt, and Tapani Raiko. 2006. Logical hidden Markov models. Journal of Artificial Intelligence Research 25, 1, 2006, 425--456.Google ScholarGoogle ScholarCross RefCross Ref
  42. S. Khokhar, I. Saleemi, and M. Shah. 2013. Multi-agent event recognition by preservation of spatiotemporal relationships between probabilistic models. Image and Vision Computing 31, 9, 603--615. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha. 2011. On the implementation of the probabilistic logic programming language problog. Theory and Practice of Logic Programming 11, 2--3, 235--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Robert Kowalski and Marek Sergot. 1986. A logic-based calculus of events. New Generation Computing 4, 1, 67--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML. 282--289.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. G. Lavee, M. Rudzsky, and E. Rivlin. 2013. Propagating certainty in Petri nets for activity recognition. IEEE Transactions on Circuits and Systems for Video Technology 23, 2, 326--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Srivatsan Laxman and P. Shanti Sastry. 2006. A survey of temporal data mining. Sadhana 31, 2, 173--198. Google ScholarGoogle ScholarCross RefCross Ref
  48. Srivatsan Laxman, Vikram Tankasali, and Ryen W. White. 2008. Stream prediction using a generative model based on frequent episodes in event sequences. In Proceedings of KDD. 453--461. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Lin Liao, Dieter Fox, and Henry A. Kautz. 2005. Hierarchical conditional random fields for GPS-based activity recognition. In Proceedings of ISRR, 487--506.Google ScholarGoogle Scholar
  50. David C. Luckham. 2001. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Jianbing Ma, Weiru Liu, and Paul Miller. 2010. Event modelling and reasoning with uncertain information for distributed sensor networks. In Scalable Uncertainty Management. Springer, 236--249. Google ScholarGoogle ScholarCross RefCross Ref
  52. Cristina Manfredotti. 2009. Modeling and inference with relational dynamic Bayesian networks. In Advances in Artificial Intelligence. Lecture Notes in Computer Science, Vol. 5549. Springer, 287--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Cristina Manfredotti, Howard Hamilton, and Sandra Zilles. 2010. Learning RDBNs for activity recognition. In Proceedings of NIPS.Google ScholarGoogle Scholar
  54. Marcelo R. N. Mendes, Pedro Bizarro, and Paulo Marques. 2009. A performance study of event processing systems. In Performance Evaluation and Benchmarking. Lecture Notes in Computer Science, Vol. 5895. Springer, 221--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Marcelo R. N. Mendes, Pedro Bizarro, and Paulo Marques. 2013. Towards a standard event processing benchmark. In Proceedings of ICPE. ACM, New York, NY, 307--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. D. Minnen, I. Essa, and T. Starner. 2003. Expectation grammars: Leveraging high-level expectations for activity recognition. In Proceedings of CVPR, Vol. 2. 626--632. Google ScholarGoogle ScholarCross RefCross Ref
  57. C. Molinaro, V. Moscato, A. Picariello, A. Pugliese, A. Rullo, and V. S. Subrahmanian. 2014. PADUA: Parallel architecture to detect unexplained activities. ACM Transactions on Internet Technology 14, 1, Article No. 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Darnell Moore and Irfan Essa. 2002. Recognizing multitasked activities from video using stochastic context-free grammar. In Proceedings of AAAI/IAAI. 770--776.Google ScholarGoogle Scholar
  59. Vlad I. Morariu and Larry S. Davis. 2011. Multi-agent event recognition in structured scenarios. In Proceedings of CVPR. 3289--3296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Stephen Muggleton and Jianzhong Chen. 2008. A behavioral comparison of some probabilistic logic models. In Probabilistic Inductive Logic Programming. Lecture Notes in Computer Science, Vol. 4911. Springer, 305--324. Google ScholarGoogle ScholarCross RefCross Ref
  61. T. Murata. 1989. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77, 4, 541--580. Google ScholarGoogle ScholarCross RefCross Ref
  62. Kevin P. Murphy. 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Dissertation. University of California.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Adrian Paschke. 2006. ECA-RuleML: An approach combining ECA rules with temporal interval-based KR event/action logics and transactional update logics. arXiv:cs/0610167.Google ScholarGoogle Scholar
  64. Adrian Paschke and Martin Bichler. 2008. Knowledge representation concepts for automated SLA management. Decision Support Systems 46, 1, 187--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Mingtao Pei, Zhangzhang Si, Benjamin Z. Yao, and Song-Chun Zhu. 2013. Learning and parsing video events with goal and intent prediction. Computer Vision and Image Understanding 117, 10, 1369--1383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. James Lyle Peterson. 1981. Petri Net Theory and the Modeling of Systems. Prentice Hall.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Lawrence R. Rabiner and Biing-Hwang Juang. 1986. An introduction to hidden Markov models. ASSP Magazine 3, 1, 4--16.Google ScholarGoogle ScholarCross RefCross Ref
  68. Christopher Ré, Julie Letchner, Magdalena Balazinksa, and Dan Suciu. 2008. Event queries on correlated probabilistic streams. In Proceedings of SIGMOD. 715--728.Google ScholarGoogle Scholar
  69. M. Richardson and P. Domingos. 2006. Markov logic networks. Machine Learning 62, 1--2, 107--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Michael S. Ryoo and Jake K. Aggarwal. 2006. Recognition of composite human activities through context-free grammar based representation. In Proceedings of CVPR. 1709--1718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Michael S. Ryoo and Jake K. Aggarwal. 2009. Semantic representation and recognition of continued and recursive human activities. International Journal of Computer Vision 82, 1, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Sumit Sanghai, Pedro Domingos, and Daniel Weld. 2005. Relational dynamic Bayesian networks. Journal of Artificial Intelligence Research 24, 2005, 759--797.Google ScholarGoogle ScholarCross RefCross Ref
  73. Joseph Selman, Mohamed R. Amer, Alan Fern, and Sinisa Todorovic. 2011. PEL-CNF: Probabilistic event logic conjunctive normal form for video interpretation. In Proceedings of ICCVW. IEEE, Los Alamitos, CA, 680--687. Google ScholarGoogle ScholarCross RefCross Ref
  74. Zhitao Shen, Hideyuki Kawashima, and Hiroyuki Kitagawa. 2008. Lineage-based probabilistic event stream processing. In Proceedings of MDMW. 106--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Vinay D. Shet, Jan Neumann, Visvanathan Ramesh, and Larry S. Davis. 2007. Bilattice-based logical reasoning for human detection. In Proceedings of CVPR. IEEE, Los Alamitos, CA, 1--8. Google ScholarGoogle ScholarCross RefCross Ref
  76. Vinay D. Shet, Maneesh Singh, Claus Bahlmann, Visvanathan Ramesh, Jan Neumann, and Larry S. Davis. 2011. Predicate logic based image grammars for complex pattern recognition. International Journal of Computer Vision 93, 2, 141--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Jeffrey Mark Siskind. 2001. Grounding the lexical semantics of verbs in visual perception using force dynamics and event logic. Journal of Artificial Intelligence Research 15, 2001, 31--90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Anastasios Skarlatidis, Alexander Artikis, Jason Filippou, and Georgios Paliouras. 2013. A probabilistic logic programming event calculus. Theory and Practice of Logic Programming 15, 2, 213--245. Google ScholarGoogle ScholarCross RefCross Ref
  79. Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis, and George A. Vouros. 2015. Probabilistic event calculus for event recognition. ACM Transactions on Computational Logic 16, 2, Article No. 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Anastaios Skarlatidis, Georgios Paliouras, George Vouros, and Alexander Artikis. 2011. Probabilistic event calculus based on Markov logic networks. In Rule-Based Modeling and Computing on the Semantic Web. Lecture Notes in Computer Science, Vol. 7018. Springer, 155--170. Google ScholarGoogle ScholarCross RefCross Ref
  81. Young Chol Song, Henry Kautz, James Allen, Mary Swift, Yuncheng Li, Jiebo Luo, and Ce Zhang. 2013. A Markov logic framework for recognizing complex events from multimodal data. In Proceedings of ICMI. 141--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Young Chol Song, Henry A. Kautz, Yuncheng Li, and Jiebo Luo. 2013. A general framework for recognizing complex events in Markov logic. In Proceedings of AAAIWS. 68--73.Google ScholarGoogle Scholar
  83. Gustav Šourek, Vojtech Aschenbrenner, Filip Železny, and Ondřej Kuželka. 2015. Lifted relational neural networks. In Proceedings of COCO. 52--60.Google ScholarGoogle Scholar
  84. Andreas Stolcke. 1995. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities. Computational Linguistics 21, 2, 165--201.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Son Dinh Tran and Larry S. Davis. 2008. Event modeling and recognition using Markov logic networks. In Proceedings of ECCV, Vol. 5303. 610--623. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Douglas L. Vail, Manuela M. Veloso, and John D. Lafferty. 2007. Conditional random fields for activity recognition. In Proceedings of AAMAS. 1331--1338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Sarvesh Vishwakarma and Anupam Agrawal. 2013. A survey on activity recognition and behavior understanding in video surveillance. Visual Computer 29, 10, 983--1009. Google ScholarGoogle ScholarCross RefCross Ref
  88. Yijie Wang, Xiaoyong Li, Xiaoling Li, and Yuan Wang. 2013. A survey of queries over uncertain data. Knowledge and Information Systems 37, 3, 485--530. Google ScholarGoogle ScholarCross RefCross Ref
  89. Y. H. Wang, K. Cao, and X. M. Zhang. 2013. Complex event processing over distributed probabilistic event streams. Computers and Mathematics With Applications 66, 10, 1808--1821. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Segev Wasserkrug, Avigdor Gal, and Opher Etzion. 2006. A taxonomy and representation of sources of uncertainty in active systems. In Next Generation Information Technologies and Systems. Lecture Notes in Computer Science, Vol. 4032. Springer, 174--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Segev Wasserkrug, Avigdor Gal, and Opher Etzion. 2012. A model for reasoning with uncertain rules in event composition systems. arXiv:1207.1427/[cs]Google ScholarGoogle Scholar
  92. Segev Wasserkrug, Avigdor Gal, Opher Etzion, and Yulia Turchin. 2008. Complex event processing over uncertain data. In Proceedings of DEBS. ACM, New York, NY, 253--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Segev Wasserkrug, Avigdor Gal, Opher Etzion, and Yulia Turchin. 2012. Efficient processing of uncertain events in rule-based systems. IEEE Transactions on Knowledge and Data Engineering 24, 1, 45--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex event processing over streams. In Proceedings of SIGMOD. 407--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Tsu-Yu Wu, Chia-Chun Lian, and Jane Yung-Jen Hsu. 2007. Joint recognition of multiple concurrent activities using factorial conditional random fields. In Proceedings of PAIR. 82--88.Google ScholarGoogle Scholar
  96. Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2010. Recognizing patterns in streams with imprecise timestamps. Proceedings of the VLDB Endowment 3, 1--2, 244--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On complexity and optimization of expensive queries in complex event processing. In Proceedings of SIGMOD. 217--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Cheng Zhou, Boris Cule, and Bart Goethals. 2015. A pattern based predictor for event streams. Expert Systems With Applications 42, 23, 9294--9306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Song-Chun Zhu and David Mumford. 2007. A stochastic grammar of images. Foundations and Trends in Computer Graphics and Vision 2, 4, 259--362. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Probabilistic Complex Event Recognition: A Survey

                                  Recommendations

                                  Comments

                                  Login options

                                  Check if you have access through your login credentials or your institution to get full access on this article.

                                  Sign in

                                  Full Access

                                  • Published in

                                    cover image ACM Computing Surveys
                                    ACM Computing Surveys  Volume 50, Issue 5
                                    September 2018
                                    573 pages
                                    ISSN:0360-0300
                                    EISSN:1557-7341
                                    DOI:10.1145/3145473
                                    • Editor:
                                    • Sartaj Sahni
                                    Issue’s Table of Contents

                                    Copyright © 2017 ACM

                                    © 2017 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

                                    Publisher

                                    Association for Computing Machinery

                                    New York, NY, United States

                                    Publication History

                                    • Published: 26 September 2017
                                    • Accepted: 1 June 2017
                                    • Revised: 1 April 2017
                                    • Received: 1 July 2016
                                    Published in csur Volume 50, Issue 5

                                    Permissions

                                    Request permissions about this article.

                                    Request Permissions

                                    Check for updates

                                    Qualifiers

                                    • survey
                                    • Research
                                    • Refereed

                                  PDF Format

                                  View or Download as a PDF file.

                                  PDF

                                  eReader

                                  View online with eReader.

                                  eReader