skip to main content
survey

Fog Computing for Sustainable Smart Cities: A Survey

Published:29 June 2017Publication History
Skip Abstract Section

Abstract

The Internet of Things (IoT) aims to connect billions of smart objects to the Internet, which can bring a promising future to smart cities. These objects are expected to generate large amounts of data and send the data to the cloud for further processing, especially for knowledge discovery, in order that appropriate actions can be taken. However, in reality sensing all possible data items captured by a smart object and then sending the complete captured data to the cloud is less useful. Further, such an approach would also lead to resource wastage (e.g., network, storage, etc.). The Fog (Edge) computing paradigm has been proposed to counterpart the weakness by pushing processes of knowledge discovery using data analytics to the edges. However, edge devices have limited computational capabilities. Due to inherited strengths and weaknesses, neither Cloud computing nor Fog computing paradigm addresses these challenges alone. Therefore, both paradigms need to work together in order to build a sustainable IoT infrastructure for smart cities. In this article, we review existing approaches that have been proposed to tackle the challenges in the Fog computing domain. Specifically, we describe several inspiring use case scenarios of Fog computing, identify ten key characteristics and common features of Fog computing, and compare more than 30 existing research efforts in this domain. Based on our review, we further identify several major functionalities that ideal Fog computing platforms should support and a number of open challenges toward implementing them, to shed light on future research directions on realizing Fog computing for building sustainable smart cities.

References

  1. Mohammad Aazam and Eui Nam Huh. 2014. Fog computing and smart gateway-based communication for cloud of things. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud (FiCloud’14). IEEE, 464--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Mohammad Aazam and Eui Nam Huh. 2015a. E-HAMC: Leveraging Fog computing for emergency alert service. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom’15). IEEE, 518--523. Google ScholarGoogle ScholarCross RefCross Ref
  3. Mohammad Aazam and Eui Nam Huh. 2015b. Fog computing micro datacenter-based dynamic resource estimation and pricing model for IoT. In Proceedings of the International Conference on Advanced Information Networking and Applications (AINA’15). IEEE, 687--694. Google ScholarGoogle ScholarCross RefCross Ref
  4. Ibrahim Abdullahi, Suki Arif, and Suhaidi Hassan. 2015. Ubiquitous shift with information centric network caching using fog computing. In Advances in Intelligent Systems and Computing, Vol. 331. Springer International Publishing, 327--335. Google ScholarGoogle ScholarCross RefCross Ref
  5. Karl Aberer, Manfred Hauswirth, and Ali Salehi. 2007. Infrastructure for data processing in large-scale interconnected sensor networks. In Proceedings of the International Conference on Mobile Data Management. 198--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. I. F. Akyildiz and J. M. Jornet. 2010. The internet of nano-things. IEEE Wireless Commun. 17, 6 (Dec 2010), 58--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Mohammad Abdullah Al Faruque and Korosh Vatanparvar. 2016. Energy management-as-a-service over fog computing platform. IEEE Int. Things J. 3, 2 (Apr 2016), 161--169. Google ScholarGoogle ScholarCross RefCross Ref
  8. Zigbee Alliance. 2008. Zigbee specification. Zigbee Alliance Website (2008), 1--604.Google ScholarGoogle Scholar
  9. U. Alvarado, A. Juanicorena, I. Adin, B. Sedano, I. Gutirrez, and J. de Nó. 2012. Energy harvesting technologies for low-power electronics. Trans. Emerg. Telecommun. Technol. 23, 8 (2012), 728--741. Google ScholarGoogle ScholarCross RefCross Ref
  10. Alicia Asin and David Gascon. 2012. 50 Sensor Applications for a Smarter World. Technical Report. Libelium Comunicaciones Distribuidas.Google ScholarGoogle Scholar
  11. Laura Belli, Simone Cirani, Gianluigi Ferrari, Lorenzo Melegari, and Marco Picone. 2015. A graph-based cloud architecture for big stream real-time applications in the internet of things. In Communications in Computer and Information Science, Vol. 508. Springer International Publishing, 91--105. Google ScholarGoogle ScholarCross RefCross Ref
  12. SIG Bluetooth. 2005. Specification of the bluetooth system. Core, Version 1 (2005), 2005--10.Google ScholarGoogle Scholar
  13. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC’12). ACM Press, New York, 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Rajesh Bordawekar, Bob Blainey, and Ruchir Puri. 2015. Analyzing analytics. Synth. Lect. Comput. Architect. 10, 4 (Nov 2015), 1--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Carsten Bormann, Angelo P. Castellani, and Zach Shelby. 2012. CoAP: An application protocol for billions of tiny internet nodes. IEEE Int. Comput. 16, 2 (2012), 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mike Botts and Alexandre Robin. 2007. OpenGIS Sensor Model Language (SensorML) Implementation Specification. Technical Report. Open Geospatial Consortium Inc.Google ScholarGoogle Scholar
  17. D. Bruneo, S. Distefano, F. Longo, G. Merlino, A. Puliafito, V. D’Amico, M. Sapienza, and G. Torrisi. 2016. Stack4Things as a fog computing platform for Smart City applications. In Proceedings of the 2016 IEEE Conference on Computer Communications Workshops (INFOCOM’16). 848--853. Google ScholarGoogle ScholarCross RefCross Ref
  18. Chiara Buratti, Andrea Conti, Davide Dardari, and Roberto Verdone. 2009. An overview on wireless sensor networks technology and evolution. Sensors 9, 9 (2009), 6869--6896. Google ScholarGoogle ScholarCross RefCross Ref
  19. Rajkumar Buyya and Amir Vahid Dastjerdi. 2016. Internet of Things : Principles and Paradigms. Morgan Kaufmann. 354 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Li Cai and Yangyong Zhu. 2015. The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14, 2 (2015). Google ScholarGoogle ScholarCross RefCross Ref
  21. Yu Cao, Songqing Chen, Peng Hou, and Donald Brown. 2015. FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In Proceedings of the 2015 IEEE International Conference on Networking, Architecture and Storage (NAS’15). IEEE, 2--11. Google ScholarGoogle ScholarCross RefCross Ref
  22. Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. 2009. Smart cities in europe. In Proceedings of the 3rd Central European Conference in Regional Science (CERS’09). 45--59.Google ScholarGoogle Scholar
  23. Jorge Cardoso and Amit Sheth. 2006. The semantic web and its applications. In Semantic Web Services Processes and Applications. Vol. 3. Springer, Boston, 3--33. Google ScholarGoogle ScholarCross RefCross Ref
  24. Angelo P. Castellani, Akbar Rahman, Esko Dijk, Thomas Fossati, and Salvatore Loreto. 2011. Best practices for HTTP-CoAP mapping implementation (2011). Retrieved from http://tools.ietf.org/html/draft-castellani-core-http-mapping-02.Google ScholarGoogle Scholar
  25. Leonardo Weiss Ferreira Chaves and Christian Decker. 2010. A survey on organic smart labels for the Internet-of-Things. In Proceedings of the 2010 Seventh International Conference on Networked Sensing Systems (INSS’10). 161--164.Google ScholarGoogle ScholarCross RefCross Ref
  26. Mung Chiang. 2015. Fog Networking: An Overview on Research Opportunities. Technical Report. Retrieved from http://www.princeton.edu/.Google ScholarGoogle Scholar
  27. Stefana Chirila, Camelia Lemnaru, and Mihaela Dinsoreanu. 2016. Semantic-based IoT device discovery and recommendation mechanism. In Proceedings of the 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP’16). IEEE, 111--116. Google ScholarGoogle ScholarCross RefCross Ref
  28. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. 2015. Phenonet: Distributed Sensor Network for Phenomics supported by High Resolution Plant Phenomics Centre, CSIRO ICT Centre, and CSIRO Sensor and Sensor Networks TCP. https://www.csiro.au/sitecore/content/Data61/Website/Our-expertise/Expertise-Cyber-physical-systems/Phenonet?sc_lang=en.Google ScholarGoogle Scholar
  29. Michael Compton, Corey Henson, Holger Neuhaus, Laurent Lefort, and Amit Sheth. 2009. A survey of the semantic specification of sensors. In Proceedings of the 2nd International Workshop on Semantic Sensor Networks at the 8th International Semantic Web Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vedat Coskun, Busra Ozdenizci, and Kerem Ok. 2013. A survey on near field communication (NFC) technology (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Joan Daemen and Vincent Rijmen. 2002. The Design of AES—The Advanced Encryption Standard. Springer-Verlag. 238 pages.Google ScholarGoogle Scholar
  32. Soumya Kanti Datta, Christian Bonnet, and Jerome Haerri. 2015. Fog computing architecture to enable consumer centric internet of things services. In Proceedings of the International Symposium on Consumer Electronics (ISCE’15), Vol. 2015-Augus. Google ScholarGoogle ScholarCross RefCross Ref
  33. Alessandra De Paola, Pierluca Ferraro, Salvatore Gaglio, Giuseppe Lo Re, and Sajal Das. 2016. An adaptive bayesian system for context-aware data fusion in smart environments. IEEE Trans. Mobile Comput. (2016), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Hans Delfs and Helmut Knebl. 2015. Introduction to Cryptography: Principles and Applications: Third Edition. Springer. 1--508 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Artem Dementyev, Steve Hodges, Stuart Taylor, and Josh Smith. 2013. Power consumption analysis of bluetooth low energy, ZigBee, and ANT sensor nodes in a cyclic sleep scenario. IEEE. Google ScholarGoogle ScholarCross RefCross Ref
  36. Anind K. Dey. 2001. Understanding and using context. Person. Ubiquit. Comput. 5, 1 (Jan 2001), 4--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Clinton Dsouza, Gail Joon Ahn, and Marthony Taguinod. 2014. Policy-driven security management for fog computing: Preliminary framework and a case study. In Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration, IEEE (IRI’14). IEEE, 16--23.Google ScholarGoogle ScholarCross RefCross Ref
  38. Harishchandra Dubey, Jing Yang, Nick Constant, Amir Mohammad Amiri, Qing Yang, and Kunal Makodiya. 2015. Fog data: Enhancing telehealth big data through fog computing. Proceedings of the ASE Big Data 8 Social Informatics 2015 (2015), 14:1--14:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Aditya Dutta. 2013. Why HTTP is not enough for the Internet of Things (2013). https://www.ibm.com/developerworks/community/blogs/mobileblog/entry/why_http_is_not_enough_for_the_internet_of_things?lang=en.Google ScholarGoogle Scholar
  40. European Commission. 2008. Internet of Things in 2020 Road Map For The Future. Technical Report. Working Group RFID of the ETP EPOSS.Google ScholarGoogle Scholar
  41. European Research Cluster on the Internet of Things. 2015. Internet of Things—IoT Semantic Interoperability: Research Challeges, Best Practices, Recommendations and Next Steps. Technical Report. 48 pages.Google ScholarGoogle Scholar
  42. Ivan Farris, Roberto Girau, Leonardo Militano, Michele Nitti, Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2015. Social virtual objects in the edge cloud. IEEE Cloud Comput. 2, 6 (Nov 2015), 20--28. Google ScholarGoogle ScholarCross RefCross Ref
  43. I. Farris, L. Militano, M. Nitti, L. Atzori, and A. Iera. 2016. Federated edge-assisted mobile clouds for service provisioning in heterogeneous IoT environments. In Proceedings of the IEEE World Forum on Internet of Things (WF-IoT’15). IEEE, 591--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. 1999. RFC 2616—Hypertext Transfer Protocol—HTTP/1.1 (1999). DOI:http://dx.doi.org/rfc/rfc2616.txt Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Imola K. Fodor. 2002. A survey of dimension reduction techniques. Library 18, 1 (2002), 1--18. Google ScholarGoogle ScholarCross RefCross Ref
  46. Forrest Stroud. Fog Computing. Retrieved from http://www.webopedia.com/TERM/F/fog-computing.html.Google ScholarGoogle Scholar
  47. Javier Garcia-Martinez. The internet of things goes nano. Retrieved from https://www.scientificamerican.com/article/the-internet-of-things-goes-nano/, Retrieved November 2016.Google ScholarGoogle Scholar
  48. David Gascon. 2015. IoT Security Infographic Privacy, Authenticity, Confidentiality and Integrity of the Sensor Data. The Invisible Asset. Technical Report. Libelium.Google ScholarGoogle Scholar
  49. Elena I. Gaura, James Brusey, Michael Allen, Ross Wilkins, Dan Goldsmith, and Ramona Rednic. 2013. Edge mining the internet of things. IEEE Sensors J. 13, 10 (oct 2013), 3816--3825. Google ScholarGoogle ScholarCross RefCross Ref
  50. Vangelis Gazis, Alessandro Leonardi, Kostas Mathioudakis, Konstantinos Sasloglou, Panayotis Kikiras, and Raghuram Sudhaakar. 2015. Components of fog computing in an industrial internet of things context. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON’15). IEEE, 37--42. Google ScholarGoogle ScholarCross RefCross Ref
  51. Tuan Nguyen Gia, Mingzhe Jiang, Amir Mohammad Rahmani, Tomi Westerlund, Pasi Liljeberg, and Hannu Tenhunen. 2015. Fog computing in healthcare internet of things: A case study on ECG feature extraction. In Proceedings of the 15th IEEE International Conference on Computer and Information Technology (CIT’15), 14th IEEE International Conference on Ubiquitous Computing and Communications (IUCC’15), 13th IEEE International Conference on Dependable, Autonomic and Se. IEEE, 356--363. Google ScholarGoogle ScholarCross RefCross Ref
  52. Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C. M. Leung. 2015. Developing IoT applications in the fog: A distributed dataflow approach. In Proceedings of the 2015 5th International Conference on the Internet of Things (IoT’15). IEEE, 155--162. Google ScholarGoogle ScholarCross RefCross Ref
  53. Rudolf Giffinger, Christian Fertner, Hans Kramar, Robert Kalasek, Natasa Pichler-Milanovic, and Evert Meijers. 2007. Smart Cities Ranking of European Medium-sized Cities. Research project report. Centre of Regional Science, Vienna, UT.Google ScholarGoogle Scholar
  54. Karina Gomez, Tinku Rasheed, Roberto Riggio, Daniele Miorandi, Cigdem Sengul, and Nico Bayer. 2013. Achilles and the tortoise: Power consumption in IEEE 802.11n and IEEE 802.11g networks. In Proceedings of the 2013 IEEE Online Conference on Green Communications (OnlineGreenComm’13). IEEE, 20--26. Google ScholarGoogle ScholarCross RefCross Ref
  55. Carlos Gonzalez. 2016. What is the Difference between Pneumatic, Hydraulic, and Electrical Actuators. 2016. Retrieved from http://machinedesign.com/linear-motion/what-s-difference-between-pneumatic-hydraulic -and-electrical-actuators {Retrieved November 2016}.Google ScholarGoogle Scholar
  56. Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. 2015. Cost-efficient resource management in fog computing supported medical CPS. IEEE Trans. Emerg. Top. Comput. 6750 (2015), 1--1.Google ScholarGoogle Scholar
  57. Daniel Halperin, Ben Greenstein, Anmol Sheth, and David Wetherall. 2010. Demystifying 802.11n power consumption. In Proceedings of the 2010 International Conference on Power Aware Computing and Systems (HotPower'10). USENIX Association, Vancouver, BC, Canada, 1. http://dl.acm.org/citation.cfm?id=1924920.1924928. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. James T. Harmening. 2013. Virtual private networks. In Computer and Information Security Handbook. 855--867. Google ScholarGoogle ScholarCross RefCross Ref
  59. Mohammed A. Hassan, Mengbai Xiao, Qi Wei, and Songqing Chen. 2015. Help your mobile applications with fog computing. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON’15). IEEE, 49--54. Google ScholarGoogle ScholarCross RefCross Ref
  60. Paul S. Henry and Hui Luo. 2002. WiFi: What’s next? IEEE Commun. Mag. 40, 12 (Dec 2002), 66--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. R Heydon and N Hunn. 2012. Bluetooth Low Energy: The Developer’s Handbook. Retrieved from https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx.Google ScholarGoogle Scholar
  62. Takamasa Higuchi, Hirozumi Yamaguchi, Teruo Higashino, and Mineo Takai. 2014. A neighbor collaboration mechanism for mobile crowd sensing in opportunistic networks. In Proceedings of the 2014 IEEE International Conference on Communications (ICC’14). IEEE, 42--47. Google ScholarGoogle ScholarCross RefCross Ref
  63. Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. 2008. MQTT-S A publish/subscribe protocol for wireless sensor networks. Proceedings of the 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE’08), 791--798. Google ScholarGoogle ScholarCross RefCross Ref
  64. Hypercat Consortium. 2016. Hypercat (2016). Retrieved from http://www.hypercat.io/.Google ScholarGoogle Scholar
  65. IEEE Instrumentation and Measurement Society. 2007. IEEE standard for a smart transducer interface for sensors and actuators wireless communication protocols and transducer electronic data sheet (TEDS) formats. IEEE Std 1451.5-2007 (2007), C1--236.Google ScholarGoogle Scholar
  66. Masanori Ishino, Yuki Koizumi, and Toru Hasegawa. 2015. Leveraging proximity services for relay device discovery in user-provided IoT networks. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT’15). IEEE, 553--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim, Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. 2015. Evaluation of docker as edge computing platform. In Proceedings of the 2015 IEEE Conference on Open Systems (ICOS’15). IEEE, 130--135. Google ScholarGoogle ScholarCross RefCross Ref
  68. Yukun Jia and Qingsong Xu. 2013. MEMS microgripper actuators and sensors: The state-of-the-art survey. Recent Pat. Mech. Eng. 6, 2 (2013), 132--142. Retrieved from http://www.eurekaselect.com/108839Google ScholarGoogle ScholarCross RefCross Ref
  69. Qingyun Jiang, Ruichun Tang, Peishun Liu, Yue Qiu, and Huimin Xu. 2014. Research on dynamic data fusion algorithm based on context awareness. In Proceedings of the 2014 IEEE International Conference on Progress in Informatics and Computing. IEEE, 529--534. Google ScholarGoogle ScholarCross RefCross Ref
  70. Jiang Jiang Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, Hao Hao Hu, and F. Bonomi. 2013. Improving web sites performance using edge servers in fog computing architecture. Proceedings of the 2013 IEEE 7th International Symposium on Service-Oriented System Engineering (Mar 2013), 320--323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Saurabh Kulkarni, Shayan Saha, and Ryler Hockenbury. 2012. Preserving privacy in sensor-fog networks. In Proceedings of the 2014 9th International Conference for Internet Technology and Secured Transactions (ICITST’14). IEEE, 96--99.Google ScholarGoogle Scholar
  72. Valerie Lampkin, Weng Tat Leong, Leonardo Olivera, Sweta Rawat, Nagesh Subrahmanyam, and Rong Xiang. 2012. Building smarter planet solutions with MQTT and IBM WebSphere MQ telemetry. IBM Redbooks (2012), 270.Google ScholarGoogle Scholar
  73. Arash Habibi Lashkari, Masood Mansoori, and Amir Seyed Danesh. 2009. Wired equivalent privacy (WEP) versus Wi-Fi protected access (WPA). In Proceedings of the 2009 International Conference on Signal Processing Systems (ICSPS’09). 445--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Jianhua Li, Jiong Jin, Dong Yuan, Marimuthu Palaniswami, and Klaus Moessner. 2015. EHOPES: Data-centered fog platform for smart living. In Proceedings of the 25th International Telecommunication Networks and Applications Conference (ITNAC’15). IEEE, 308--313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. LinkLabs. 2016. Low Power, Wide Area Networks. Technical Report.Google ScholarGoogle Scholar
  76. Linux Foundation. 2016a. AllJoyn Framework (2016). Retrieved from https://allseenalliance.org/framework.Google ScholarGoogle Scholar
  77. Linux Foundation. 2016b. IoTivity. (2016). Retrieved from https://www.iotivity.org/.Google ScholarGoogle Scholar
  78. Xiufeng Liu, Nadeem Iftikhar, and Xike Xie. 2014. Survey of real-time processing systems for big data. In Proceedings of the 18th International Database Engineering 8 Applications Symposium (IDEAS’14). ACM Press, New York, 356--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Xin Ma and Wei Luo. 2008. The analysis of 6LowPAN technology. In Proceedings of the 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA’08), Vol. 1. IEEE, 963--966. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. H. Madsen, G. Albeanu, Bernard Burtschy, and Fl. Popentiu-Vladicescu. 2013. Reliability in the utility computing era: Towards reliable fog computing. In Proceedings of the International Conference on Systems, Signals, and Image Processing. IEEE, 43--46.Google ScholarGoogle ScholarCross RefCross Ref
  81. Aapo Markkanen. 2015. Competitive Edge from Edge Intelligence IoT Analytics Today and in 2020 (2015). Retrieved from http://www.4cad.fr/content/files/Competitive-Edge-from-Edge-Intelligence-IoT-Whitepaper. pdfGoogle ScholarGoogle Scholar
  82. Ajay Mohandas, Khoshrav Doctor, Shubham Jayawant, Mohit Pattni, and Era Johri. 1060. NFC versus bluetooth. Int. J. Multidisc. Sci. Emerg. Res. 4, 1 (1060), 2349--6037.Google ScholarGoogle Scholar
  83. National Information Standards Organization. 2004. Understanding metadata. National Information Standards, NISO Press, MD (2004), 20.Google ScholarGoogle Scholar
  84. Tommy Nilsson, Carl Hogsden, Charith Perera, Saeed Aghaee, David Scruton, Andreas Lund, and Alan F. Blackwell. 2016. Applying seamful design in location-based mobile museum applications. ACM Trans. Multimedia. Comput. Commun. Appl. (TOMM) (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Takayuki Nishio, Ryoichi Shinkuma, Tatsuro Takahashi, and Narayan B. Mandayam. 2013. Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud. In Proceedings of the First International Workshop on Mobile Cloud Computing 8 Networking (MobileCloud’13). ACM Press, New York, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Loutfi Nuaymi. 2007. WiMAX: Technology for Broadband Wireless Access. 1--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. OASIS. 2014. MQTT version 3.1.1. OASIS Standard October (2014), 81. Retrieved from http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.Google ScholarGoogle Scholar
  88. John O’Hara. 2007. Toward a commodity enterprise middleware. Queue 5, 4 (May 2007), 48--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. OpenIoT Consortium. 2012. Open Source Solution for the Internet of Things into the Cloud (Jan 2012).Google ScholarGoogle Scholar
  90. Jessica Oueis, Emilio Calvanese Strinati, and Sergio Barbarossa. 2015. The fog balancing: Load distribution for small cell cloud computing. Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC’15), 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  91. Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos. 2014a. Context-aware Dynamic Discovery and Configuration of Things in Smart Environments. Springer International Publishing, Cham, 215--241. Google ScholarGoogle ScholarCross RefCross Ref
  92. C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos, and P. Christen. 2014b. Sensor discovery and configuration framework for the internet of things paradigm. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT’14). 94--99. Google ScholarGoogle ScholarCross RefCross Ref
  93. Charith Perera, Chi Harold Liu, and Srimal Jayawardena. 2014c. A survey on internet of things from industrial market perspective. IEEE Access 2 (2014), 1660--1679. Google ScholarGoogle Scholar
  94. Charith Perera, Chi Harold Liu, and Srimal Jayawardena. 2015a. The emerging internet of things marketplace from an industrial perspective: A survey. IEEE Trans. Emerg. Top. Comput. 3, 4 (2015), 585--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Charith Perera, Rajiv Ranjan, Lizhe Wang, Samee U. Khan, and Albert Y. Zomaya. 2015b. Big data privacy in the internet of things era. IT Prof. 17, 3 (2015), 32--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Charith Perera, Dumidu Talagala, Chi Harold Liu, and Julio C. Estrella. 2015c. Energy-efficient location and activity-aware on-demand mobile distributed sensing platform for sensing as a service in IoT clouds. IEEE Trans. Comput. Soc. Syst. 2, 4 (dec 2015), 171--181. Google ScholarGoogle ScholarCross RefCross Ref
  97. Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos. 2014a. Context aware computing for the internet of things: A survey. IEEE Commun. Surveys Tutor. 16, 1 (2014), 414--454. Google ScholarGoogle ScholarCross RefCross Ref
  98. Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos. 2014b. Sensing as a service model for smart cities supported by internet of things. Eur. Trans. Telecommun. 25, 1 (2014), 81--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Charith Perera, Arkady Zaslavsky, Peter Christen, Ali Salehi, and Dimitrios Georgakopoulos. 2012. Connecting mobile things to global sensor network middleware using system-generated wrappers. In Proceedings of the 11th ACM International Workshop on Data Engineering for Wireless and Mobile Access Workshop (SIGMOD/PODS’12). 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. S. Pietschmann, A. Mitschick, R. Winkler, and K. Meissner. 2008. CroCo: Ontology-based, cross-application context management. In Proceedings of the 3rd International Workshop on Semantic Media Adaptation and Personalization (SMAP’08). 88--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. R. Pozza, M. Nati, S. Georgoulas, K. Moessner, and A. Gluhak. 2015. Neighbor discovery for opportunistic networking in internet of things scenarios: A survey. IEEE Access 3 (2015), 1101--1131. Google ScholarGoogle ScholarCross RefCross Ref
  102. Jurgo Preden, Jaanus Kaugerand, Erki Suurjaak, Sergei Astapov, Leo Motus, and Raido Pahtma. 2015. Data to decision: Pushing situational information needs to the edge of the network. In Proceedings of the 2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision. IEEE, 158--164. Google ScholarGoogle ScholarCross RefCross Ref
  103. Daniel Puschmann, Payam Barnaghi, and Rahim Tafazolli. 2016. Adaptive clustering for dynamic IoT data streams. IEEE Int. Things J. (2016), 1--1.Google ScholarGoogle Scholar
  104. A. Rahman and E. Dijk. 2014. Group Communication for the Constrained Application Protocol (CoAP) (2014). Retrieved from https://tools.ietf.org/pdf/rfc7390.pdf.Google ScholarGoogle Scholar
  105. Shahid Raza, Hossein Shafagh, Kasun Hewage, Rene Hummen, and Thiemo Voigt. 2013. Lithe: Lightweight secure CoAP for the internet of things. IEEE Sens. J. 13, 10 (2013), 3711--3720. Google ScholarGoogle ScholarCross RefCross Ref
  106. Shahid Raza, Daniele Trabalza, and Thiemo Voigt. 2012. 6LoWPAN compressed DTLS for CoAP. In Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS’12). 287--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. RCUK Digital Economy HAT Project. 2014. Engineering a Market for Personal Data: The Hub-of-all-Things (HAT) A Briefing Paper. Technical Report. RCUK Digital Economy.Google ScholarGoogle Scholar
  108. Gil Reiter. 2014. Wireless Connectivity for the Internet of Things. Technical Report. Texas Instruments Incorporated, Texas. Retrieved from http://www.ti.com.cn/cn/lit/wp/swry010/swry010.pdf.Google ScholarGoogle Scholar
  109. R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 2 (Feb 1978), 120--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. RS Components. 2015. 11 Internet of Things (IoT) Protocols You Need to Know About DesignSpark. (2015). Retrieved from http://www.rs-online.com/designspark/electronics/knowledge-item/eleven-internet-of-things-iot-protocols-you-need-to-know-about.Google ScholarGoogle Scholar
  111. P. Saint-Andre. 2011. Extensible Messaging and Presence Protocol (XMPP): Core (2011). https://tools.ietf.org/html/rfc6120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Arjuna Sathiaseelan, Adisorn Lertsinsrubtavee, Adarsh Jagan, Prakash Baskaran, and Jon Crowcroft. 2016. Cloudrone: Micro clouds in the sky. In Proceedings of the ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use (Mobisys Dronet’16). Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Stan Schneider. 2013. Understanding The Protocols Behind The Internet Of Things (2013). Retrieved from http://electronicdesign.com/iot/understanding-protocols-behind-internet-things.Google ScholarGoogle Scholar
  114. Vivek Kumar Sehgal, Anubhav Patrick, Ashutosh Soni, and Lucky Rajput. 2015. Smart human security framework using internet of things, cloud and fog computing. Adv. Intel. Syst. Comput. 321 (2015), 251--263. Google ScholarGoogle ScholarCross RefCross Ref
  115. Zach Shelby and Carsten Bormann. 2009. 6LoWPAN: The Wireless Embedded Internet. 1--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Z. Shelby, K. Hartke, and C. Bormann. 2014. The constrained application protocol (CoAP). Rfc 7252 (2014), 112. Google ScholarGoogle ScholarCross RefCross Ref
  117. Dilpreet Singh and Chandan K. Reddy. 2015. A survey on platforms for big data analytics. J. Big Data 2, 1 (Dec 2015), 8.Google ScholarGoogle ScholarCross RefCross Ref
  118. Meena Singh, M. A. Rajan, V. L. Shivraj, and P. Balamuralidhar. 2015. Secure MQTT for internet of things (IoT). In Proceedings of the 2015 5th International Conference on Communication Systems and Network Technologies (CSNT’15). 746--751. Google ScholarGoogle ScholarCross RefCross Ref
  119. Maninder Pal Singh, Mohammad A. Hoque, and Sasu Tarkoma. 2016. A survey of systems for massive stream analytics (May 2016). Retrieved from http://arxiv.org/abs/1605.09021.Google ScholarGoogle Scholar
  120. Andy Stanford-Clark and Hong Linh Truong. 2008. MQTT for sensor networks ( MQTT-S ) protocol specification. mqttorg (2008), 1--27.Google ScholarGoogle Scholar
  121. Vladimir Stantchev, Ahmed Barnawi, Sarfaraz Ghulam, Johannes Schubert, and Gerrit Tamm. 2015. Smart items, fog and cloud computing as enablers of servitization in healthcare. Sens. Transduc. 185, 2 (2015), 121--128.Google ScholarGoogle Scholar
  122. Ivan Stojmenovic and Sheng Wen. 2014. The fog computing paradigm: Scenarios and security issues. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems (FedCSIS’14). IEEE, 1--8. Google ScholarGoogle ScholarCross RefCross Ref
  123. Salvatore J. Stolfo, Malek Ben Salem, and Angelos D. Keromytis. 2012. Fog computing: Mitigating insider data theft attacks in the cloud. In Proceedings of the IEEE CS Security and Privacy Workshops (SPW’12). IEEE, 125--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Jingtao Su, Fuhong Lin, Xianwei Zhou, and Xing Lu. 2015. Steiner tree-based optimal resource caching scheme in fog computing. China Commun. 12, 8 (Aug 2015), 161--168. Google ScholarGoogle ScholarCross RefCross Ref
  125. G. Suciu, A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu. 2013. Smart cities built on resilient cloud computing and secure internet of things. In Proceedings of the 2013 19th International Conference on Control Systems and Computer Science. 513--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Bo Tang, Zhen Chen, Gerald Hefferman, Tao Wei, Haibo He, and Qing Yang. 2015. A hierarchical distributed fog computing architecture for big data analysis in smart cities. In Proceedings of the ASE BigData 8 Social Informatics 2015 Conference, 28:1--28:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. VFabric Team. 2013. Choosing Your Messaging Protocol: AMQP, MQTT, or STOMP. (2013). Retrieved from http://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.htmlGoogle ScholarGoogle Scholar
  128. Texas Instruments. 2014. Wireless Connectivity. Technical Report. Texas.Google ScholarGoogle Scholar
  129. Dinesh Thangavel, Xiaoping Ma, Alvin Valera, Hwee Xian Tan, and Colin Keng Yan Tan. 2014. Performance evaluation of MQTT and CoAP via a common middleware. In Proceedings of the 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Conference Proceedings (ISSNIP’14). Google ScholarGoogle ScholarCross RefCross Ref
  130. Stephen A. Thomas. 2000. SSL 8 TLS Essentials: Securing the Web. Wiley, 224 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Thread Group. 2015. Thread Stack Fundamentals. Technical Report.Google ScholarGoogle Scholar
  132. Phillip Tracy. 2016. What is the internet of things at nanoscale. (2016). Retrieved from http://www.rcrwireless.com/20160912/big-data-analytics/nano-scale-iot-tag31-tag99 {Retrieved November 2016}.Google ScholarGoogle Scholar
  133. Nguyen B. Truong, Gyu Myoung Lee, and Yacine Ghamri-Doudane. 2015. Software defined networking-based vehicular Adhoc network with fog computing. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM’15). IEEE, 1202--1207. Google ScholarGoogle ScholarCross RefCross Ref
  134. Lorenzo Vangelista, Andrea Zanella, and Michele Zorzi. 2015. Long-range IoT technologies: The dawn of LoRaTM. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (LNICST), Vol. 159. 51--58.Google ScholarGoogle Scholar
  135. Steve Vinoski. 2006. Advanced message queuing protocol. IEEE Int. Comput. 10, 6 (2006), 87--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Roy Want. 2006. An introduction to RFID technology (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. Roy Want. 2011. Near field communication. IEEE Pervas. Comput. 10(3) (2011), 4--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Thomas Watteyne, Xavier Vilajosana, Branko Kerkez, Fabien Chraim, Kevin Weekly, Qin Wang, Steven Glaser, and Kris Pister. 2012. OpenWSN: A standards-based low-power wireless development environment. Trans. Emerg. Telecommun. Technol. 23, 5 (2012), 480--493. Google ScholarGoogle ScholarCross RefCross Ref
  139. Wang Wei and Payam Barnaghi. 2009. Semantic annotation and reasoning for sensor data. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5741 LNCS. Springer, Berlin, 66--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Nemirovsky. 2014. Key ingredients in an IoT recipe: Fog computing, cloud computing, and more fog computing. Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD’14), 325--329. Google ScholarGoogle ScholarCross RefCross Ref
  141. Jui-Hung Yeh, Jyh-Cheng Chen, and Chi-Chen Lee. 2003. WLAN standards. IEEE Potent. 22, 4 (2003), 16--22. Google ScholarGoogle ScholarCross RefCross Ref
  142. Shanhe Yi, Cheng Li, and Qun Li. 2015a. A survey of fog computing. In Proceedings of the 2015 Workshop on Mobile Big Data (Mobidata’15). ACM Press, New York, 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Shanhe Yi, Zhengrui Qin, and Qun Li. 2015b. Security and privacy issues of fog computing: A survey. Springer International Publishing, 685--695. Google ScholarGoogle ScholarCross RefCross Ref
  144. Z-Wave. 2015. About Z-Wave (2015). Retrieved from http://www.z-wave.com/z-waveGoogle ScholarGoogle Scholar
  145. John K. Zao, Tchin Tze Gan, Chun Kai You, Sergio Jose Rodriguez Mendez, Cheng En Chung, Yu Te Wang, Tim Mullen, and Tzyy Ping Jung. 2014. Augmented brain computer interaction based on fog computing and linked data. In Proceedings - 2014 International Conference on Intelligent Environments, IE 2014. IEEE, 374--377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Arkady Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. 2012. Sensing as a service and big data. In Proceedings of the International Conference on Advances in Cloud Computing (ACC’12). 21--29.Google ScholarGoogle Scholar
  147. Paul. Zikopoulos. 2012. Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill. 141 pages.Google ScholarGoogle Scholar
  148. T. G. Zimmerman. 1996. Personal area networks: Near-field intrabody communication. IBM Syst. J. 35, 3.4 (1996), 609--617. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fog Computing for Sustainable Smart Cities: A Survey

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 50, Issue 3
            May 2018
            550 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3101309
            • Editor:
            • Sartaj Sahni
            Issue’s Table of Contents

            Copyright © 2017 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 29 June 2017
            • Revised: 1 February 2017
            • Accepted: 1 February 2017
            • Received: 1 August 2016
            Published in csur Volume 50, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • survey
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader