skip to main content
research-article
Public Access

Momentum-Mapped Inverted Pendulum Models for Controlling Dynamic Human Motions

Published:06 January 2017Publication History
Skip Abstract Section

Abstract

Designing a unified framework for simulating a broad variety of human behaviors has proven to be challenging. In this article, we present an approach for control system design that can generate animations of a diverse set of behaviors including walking, running, and a variety of gymnastic behaviors. We achieve this generalization with a balancing strategy that relies on a new form of inverted pendulum model (IPM), which we call the momentum-mapped IPM (MMIPM). We analyze reference motion capture data in a pre-processing step to extract the motion of the MMIPM. To compute a new motion, the controller plans a desired motion, frame by frame, based on the current pendulum state and a predicted pendulum trajectory. By tracking this time-varying trajectory, the controller creates a character that dynamically balances, changes speed, makes turns, jumps, and performs gymnastic maneuvers.

Skip Supplemental Material Section

Supplemental Material

tog-05.mp4

mp4

394.4 MB

References

  1. Yeuhi Abe, Marco da Silva, and Jovan Popović. 2007. Multiobjective control with frictional contacts. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 249--258.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Okan Arikan and David A. Forsyth. 2002. Interactive motion generation from examples. ACM Transactions on Graphics 21, 3 (2002), 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mazen Al Borno, Eugene Fiume, A. Hertzmann, and M. de Lasa. 2014. Feedback control for rotational movements in feature space. Computer Graphics Forum (2014).Google ScholarGoogle Scholar
  4. David Brown, Adriano Macchietto, Kang Kang Yin, and Victor Zordan. 2013. Control of rotational dynamics for ground behaviors. In Proceedings of the 2013 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 55--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. James R. Cloutier. 1997. State-dependent Riccati equation techniques: An overview. In Proceedings of the 1997 American Control Conference. 932--936. Google ScholarGoogle ScholarCross RefCross Ref
  6. Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2009. Robust task-based control policies for physics-based characters. ACM Transactions on Graphics 28, 5 (2009), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized biped walking control. ACM Transactions on Graphics 29, 4 (2010), 130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Marco da Silva, Yeuhi Abe, and Jovan Popović. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3 (2008), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. 2010. Feature-based locomotion controllers. ACM Transactions on Graphics 29, 4 (2010), 131.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Peter Dorato, Vito Cerone, and Chaouki Abdallah. 1994. Linear-Quadratic Control: An Introduction. Simon 8 Schuster.Google ScholarGoogle Scholar
  11. Sehoon Ha and C. Karen Liu. 2014. Iterative training of dynamic skills inspired by human coaching techniques. ACM Transactions on Graphics 34, 1 (2014), 1:1--1:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Sehoon Ha, Yuting Ye, and C. Karen Liu. 2012. Falling and landing motion control for character animation. ACM Transactions on Graphics 31, 6 (2012), 155.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Nikolaus Hansen and Andreas Ostermeier. 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In International Conference on Evolutionary Computation. 312--317. Google ScholarGoogle ScholarCross RefCross Ref
  14. Rachel Heck and Michael Gleicher. 2007. Parametric motion graphs. In Proceedings of the 2007 ACM Symposium on Interactive 3D Graphics and Games. 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. 1995. Animating human athletics. In ACM SIGGRAPH. 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Shuuji Kajita, Takashi Nagasaki, Kenji Kaneko, Kazuhito Yokoi, and Kazuo Tanie. 2004. A hop towards running humanoid biped. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation. 629--635. Google ScholarGoogle ScholarCross RefCross Ref
  17. Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002a. Motion graphs. ACM Transactions on Graphics 21, 3 (2002), 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lucas Kovar, John Schreiner, and Michael Gleicher. 2002b. Footskate cleanup for motion capture editing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 97--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Taesoo Kwon and Jessica Hodgins. 2010. Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 129--138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics 21, 3 (2002), 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sung-hee Lee. 2007. Reaction mass pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  22. Sung-Hee Lee and Ambarish Goswami. 2012. A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonous Robots 33, 4 (2012), 399--414. Google ScholarGoogle ScholarCross RefCross Ref
  23. Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010. Data-driven biped control. ACM Transactions on Graphics 29, 4 (2010), 129.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. 2014. Locomotion control for many-muscle humanoids. ACM Transactions on Graphics 33, 6 (2014), 218:1--218:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović. 2010. Motion fields for interactive character locomotion. ACM Transactions on Graphics 29, 6 (2010), 138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sergey Levine and Jovan Popović. 2012. Physically plausible simulation for character animation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 221--230.Google ScholarGoogle Scholar
  27. Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided learning of control graphs for physics-based characters. ACM Transactions on Graphics 35, 3 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010. Sampling-based contact-rich motion control. ACM Transactions on Graphics 29, 4 (2010), 128.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Adriano Macchietto, Victor Zordan, and Christian R. Shelton. 2009. Momentum control for balance. ACM Transactions on Graphics 28, 3 (2009), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. James McCann and Nancy Pollard. 2007. Responsive characters from motion fragments. ACM Transactions on Graphics 26, 3 (2007), 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Igor Mordatch, Martin de Lasa, and Aaron Hertzmann. 2010. Robust physics-based locomotion using low-dimensional planning. ACM Transactions on Graphics 29, 4 (2010), 71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. 2009. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics 28, 3 (2009), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Uldarico Muico, Jovan Popović, and Zoran Popović. 2011. Composite control of physically simulated characters. ACM Transactions on Graphics 30, 3 (2011), 16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Frank C. Park, James E. Bobrow, and Scott R. Ploen. 1995. A lie group formulation of robot dynamics. The International Journal of Robotics Research 14, 6 (1995), 609--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Robert R. Playter and Marc Raibert. 1992. Control of a biped somersault in 3D. In Proceedings of the 1992 lEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1. 582--589.Google ScholarGoogle Scholar
  36. Marko B. Popovic, Andreas G. Hofmann, and Hugh M. Herr. 2004. Angular momentum regulation during human walking: Biomechanics and control. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation. 2405--2411. Google ScholarGoogle ScholarCross RefCross Ref
  37. Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics 23, 3 (2004), 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and Michael Gleicher. 2001. Computer puppetry: An importance-based approach. ACM Transactions on Graphics 20, 2 (2001), 67--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Hyun Joon Shin and Hyun Seok Oh. 2006. Fat graphs: Constructing an interactive character with continuous controls. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 291--298.Google ScholarGoogle Scholar
  40. Takaaki Shiratori, Brooke Coley Raki Cham, and Jessica K. Hodgins. 2009. Simulating balance recovery responses to trips based on biomechanical principles. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tomomichi Sugihara. 2008. Simulated regulator to synthesize ZMP manipulation and foot location for autonomous control of biped robots. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation. 1264--1269. Google ScholarGoogle ScholarCross RefCross Ref
  42. Ryosuke Tajima, Daisaku Honda, and Keisuke Suga. 2009. Fast running experiments involving a humanoid robot. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation. 1571--1576. Google ScholarGoogle ScholarCross RefCross Ref
  43. Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics 26, 3 (2007), 7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2009. Optimizing walking controllers. ACM Transactions on Graphics 28, 5 (2009), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2010. Optimizing walking controllers for uncertain inputs and environments. ACM Transactions on Graphics 29, 4 (2010), 73.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Transactions on Graphics 31, 4 (2012), 25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wikipedia. 2014. Celestina Popa—Wikipedia, The Free Encyclopedia. (2014). [Online; accessed 3-April-2014]. https://en.wikipedia.org/wiki/Celestina_Popa.Google ScholarGoogle Scholar
  48. Chun-Chih Wu and Victor Zordan. 2010. Goal-directed stepping with momentum control. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 113--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jia-chi Wu and Zoran Popović. 2010. Terrain-adaptive bipedal locomotion control. ACM Transactions on Graphics 29, 4 (2010), 72.Google ScholarGoogle Scholar
  50. M. Yamakita, M. Kishikawa, and T. Sadahiro. 2003. Motion control for robust landing of acrobat robot (SMB). In Proceedings of the International Conference on Intelligent Robots and Systems. IEEE, 1141--1146. Google ScholarGoogle ScholarCross RefCross Ref
  51. Yuting Ye and C. Karen Liu. 2010. Optimal feedback control for character animation using an abstract model. ACM Transactions on Graphics 29, 4 (2010), 74.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. KangKang Yin, Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2008. Continuation methods for adapting simulated skills. ACM Transactions on Graphics 27, 3 (2008), 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple biped locomotion control. ACM Transactions on Graphics 26, 3 (2007), 105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Victor B. Zordan, David F. Brown, Adriano Macchietto, and KangKang Yin. 2014. Control of rotational dynamics for ground and aerial behavior. IEEE Transactions on Visualization and Computer Graphics 20, 10 (2014), 1356--1366. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Momentum-Mapped Inverted Pendulum Models for Controlling Dynamic Human Motions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 36, Issue 1
        February 2017
        165 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2996392
        Issue’s Table of Contents

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 January 2017
        • Revised: 1 September 2016
        • Accepted: 1 September 2016
        • Received: 1 December 2014
        Published in tog Volume 36, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader