skip to main content
review-article
Open Access

Cell-graphs: image-driven modeling of structure-function relationship

Published:20 December 2016Publication History
Skip Abstract Section

Abstract

Cell-graph construction methods are best served when physics-driven and data-driven paradigms are joined.

Skip Supplemental Material Section

Supplemental Material

References

  1. Acar, E. and Yener, B. Unsupervised multiway data analysis: A literature survey. IEEE Transactions on Knowledge and Data Engineering 21, 1 (2009), 6--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Albert, R., Schindewolf, T., Baumann, I. and Harms, H. Three-dimensional image processing for morphometric analysis of epithelium sections. Cytometry (1992); 13:759--765.Google ScholarGoogle Scholar
  3. Bilgin, C.C. et al. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory. PloS One 5, 9 (2010), e12783.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bilgin, C.C., Bullough, P., Plopper, G.E., and Yener B. ECM-aware cell-graph mining for bone tissue modeling and classification. Data Min. Knowl. Discov. 20, 3 (May 2010), 416--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bilgin, C., Demir, C., Nagi, C. and Yener, B. Cell-graph mining for breast tissue modeling and analysis. In Proc. of IEEE EMBC (2007).Google ScholarGoogle Scholar
  6. Bilgin, C.C., Ray, S., Baydil, B., Daley, W.P., Larsen, M. and Yener, B. Multiscale feature analysis of salivary gland branching morphogenesis. PLoS One 7, 3 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  7. Car, R. and Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Physical Review Letters 55, 22 (1985), 2471--2474.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chung, F.R.K. Spectral graph theory. Conference Board of the Mathematical Sciences, American Mathematical Society 92 (1997). Providence, RI.Google ScholarGoogle Scholar
  9. Davies J. Branching Morphogenesis. Springer-Verlag, 2004.Google ScholarGoogle Scholar
  10. de Lathauwer, de Moor, L.B. and Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Analysis and Apps 21, 4 (2000), 1253--1278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Demir C., Gultekin, S.H. and Yener, B. Augmented cell-graphs for automated cancer diagnosis. Bioinformatics (Suppl 2) 21, (2005), ii7--ii12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Demir C., Gultekin, S.H. and Yener, B. Learning the topological properties of brain tumors. IEEE/ACM Trans. Computational Biology and Bioinformatics 2, 3 (2005), 262--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dhulekar, N., Oztan, B. and Yener B. Model coupling for predicting a developmental patterning process. In Proc. of SPIE 2016.Google ScholarGoogle Scholar
  14. Eden, M. A two-dimensional growth process. In 4th Berkeley Symposium on Mathematical Statistics and Probability (1961), 223--239.Google ScholarGoogle Scholar
  15. Einstein, A.J., Wu, H.S., Sanchez, M. and Gil, J. Fractal characterization of chromatin appearance for diagnosis in breast cytology. Journal of Pathology 185, 4 (1998), 366--381.Google ScholarGoogle ScholarCross RefCross Ref
  16. Esgiar, A.N., Naguib, R.N.G, Sharif, B.S, Bennett, M.K, Murray, A. Fractal analysis in the detection of colonic cancer images. IEEE Trans. Information Technology in Biomedicine 6, 1 (2002), 54--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A. Multiscale vessel enhancement filtering. Lecture Notes in Computer Science (1998), 130--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Galloway M.M. Texture analysis using gray level run lengths. Computer Graphics and Image Processing. (1975) 4:172--179.Google ScholarGoogle Scholar
  19. Gerdes et. Al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. PNAS 110, 29 (2013), 11982--11987.Google ScholarGoogle ScholarCross RefCross Ref
  20. Gunduz, C., Yener, B., and Gultekin, S.H. The cell graphs of cancer. Bioinformatics 20 (2004), i145--i151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gurcan, M.N., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N. and Yener, B. Histopathological Image Analysis: A Review. 2009.Google ScholarGoogle Scholar
  22. Haralick R.M. Statistical and structural approaches to texture. In Proc. of IEEE. 67, 5 (1979), 786--804.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hladuvka, J., Konig, A. and Groller, E. Exploiting eigenvalues of the Hessian matrix for volume decimation. In Proceeding of the 9th International Conference in Central Europe on Computer Graphics, Visualization, and Computer Vision (2001), 124--129.Google ScholarGoogle Scholar
  24. Hsu, C. and Lin, C. A comparison of methods for multiclass support vector machines. IEEE Trans. on Neural Networks 13, 2 (2002), 415--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jaromczyk J.W. and Toussaint G.T. (1992). Relative neighborhood graphs and their relatives. In Proc. IEEE 80 (1992), 1502--1517.Google ScholarGoogle ScholarCross RefCross Ref
  26. Keenan S.J., Diamond, J., McCluggage, W.G., Bharucha, H. Thompson, D., Bartels, B.H. and Hamilton, P.W. An automated machine vision system for the histological grading of cervical intraepithelial neoplasia. J. Pathol. 192, 3 (2000), 351--362.Google ScholarGoogle ScholarCross RefCross Ref
  27. Li, G., Semerci, M., Yener, B. and Zaki, M.J. Effective graph classification based on topological and label attributes. ASA Data Science J. Statistical Analysis and Data Mining 5, 4 (2012), 265--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. McKeen-Polizzotti, L. et al. Quantitative metric profiles capture three-dimensional temporospatial architecture to discriminate cellular functional states. BMC Medical Imaging 11.1 (2011), 1.Google ScholarGoogle ScholarCross RefCross Ref
  29. Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Processing Magazine 29, 5 (Sept. 2012), 140--145.Google ScholarGoogle ScholarCross RefCross Ref
  30. Meineke, F., Potten, C. and Loeffler, M. Cell migration and organization in the intestinal crypt using a latticefree model. Cell Proliferation 34 (2001), 253--266.Google ScholarGoogle ScholarCross RefCross Ref
  31. Metzger, R., Klein, O., Martin, G. and Krasnow M. The branching programme of mouse lung development. Nature 453 (2008), 745--750.Google ScholarGoogle ScholarCross RefCross Ref
  32. Murray, J.D. and Oster, G.F. Generation of biological pattern and form. Math Med Biol. 1 (1984), 51--75.Google ScholarGoogle ScholarCross RefCross Ref
  33. Oster, G.F., Murray, J.D., and Harris, A.K. Mechanical aspects of mesenchymal morphogenesis. J. Embryol Exp Morphol 78 (1983), 83--125.Google ScholarGoogle Scholar
  34. Oztan, B., Kong, H., Gürcan, M.N. and Yener, B. Follicular lymphoma grading using cell-graphs and multi-scale feature analysis. SPIE Medical Imaging. International Society for Optics and Photonics, 831516--831516.Google ScholarGoogle Scholar
  35. Oztan, B., Shubert, K.R., Bjornsson, C.S., Plopper, G.E. and Yener, B. Biologically-driven cell-graphs for breast tissue grading. In Proceedings of IEEE 10th International Symposium on Biomedical Imaging (Apr. 2013), 137--140.Google ScholarGoogle ScholarCross RefCross Ref
  36. Plopper, G., Larsen, M. and Yener, B. Image-enhanced Systems Biology: A Multiscale, Multidimensional Approach to Modeling and Controlling Stem Cell Function in Computational Biology of Embryonic Stem Cells. Ming Zhan, ed. Bentham Science Publishers, 2012, 71--87.Google ScholarGoogle Scholar
  37. Raymond, E., Raphael, M., Grimaud, M., Vincent, L., Binet, J.L., Meyer, F. Germinal center analysis with the tools of mathematical morphology on graphs. Cytometry 14 (1993), 848--861.Google ScholarGoogle ScholarCross RefCross Ref
  38. Rejniak, K.A. An immersed boundary framework for modeling the growth of individual cells: An application to early tumour development. J. Theor Biol 247, 1 (2007), 186--204.Google ScholarGoogle ScholarCross RefCross Ref
  39. Srivathsan, A., Menshykau, D., Michos, O. and Iber, D. Dynamic image-based modelling of kidney branching morphogenesis. Computational Methods in Systems Biology, Lecture Notes in Computer Science 8130 (2013), 106--119. Springer, Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Street W.N., Wolberg, W.H. and Mangasarian, O.L. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology. San Jose, CA, 1905:861--870.Google ScholarGoogle Scholar
  41. Turing A.M. The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237, 641 (1952). 37--72.Google ScholarGoogle Scholar
  42. Weyn, B. et al. Computer-assisted differential diagnosis of malignant mesothelioma based on syntactic structure analysis. Cytometry (1999), 35:23--29.Google ScholarGoogle Scholar
  43. Wiltgen M., Gerger, A. and Smolle, J. Tissue counter analysis of healthy common nevi and malignant melanoma. Int J Med Inform. 69(1), 17--28, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  44. Xing, F. and Yang, L. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review. IEEE Rev Biomed Eng. (Jan. 6, 2016).Google ScholarGoogle Scholar
  45. Yener, B., Dhulekar, N., Ray, S., Yuan, D., Oztan, B., Baskaran, A. and Larsen, M. Prediction of growth factor dependent cleft formation during branching morphogenesis using a dynamic graph-based growth model. IEEE/ACM Trans. Computational Biology and Bioinformatics. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Cell-graphs: image-driven modeling of structure-function relationship

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Communications of the ACM
            Communications of the ACM  Volume 60, Issue 1
            January 2017
            95 pages
            ISSN:0001-0782
            EISSN:1557-7317
            DOI:10.1145/3028256
            • Editor:
            • Moshe Y. Vardi
            Issue’s Table of Contents

            Copyright © 2016 Copyright is held by the owner/author(s)

            Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 20 December 2016

            Check for updates

            Qualifiers

            • review-article
            • Popular
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format