skip to main content
research-article

BLOW-UP: Toward Distributed and Scalable Space Filling Curve Construction in 3D Volumetric WSNs

Authors Info & Claims
Published:07 September 2016Publication History
Skip Abstract Section

Abstract

In wireless sensor networks (WSNs), a space filling curve (SFC) refers to a path passing through all nodes in the network, with each node visited at least once. By enforcing a linear order of the sensor nodes through an SFC, many applications in WSNs concerning serial operations on both sensor nodes and sensor data can be performed, with examples including serial data fusion and path planning of mobile nodes. Although a few studies have made efforts to find such SFCs in WSNs, they primarily target 2D planar or 3D surface settings and cannot be directly applied to 3D volumetric WSNs due to considerably more complex geometric features and topology shapes that the 3D volumetric settings introduce. This article presents BLOW-UP, a distributed, scalable, and connectivity-based algorithm to construct an SFC for a 3D volumetric WSN (or alternatively to linearize the 3D volumetric network). The main idea of BLOW-UP is to decompose the given 3D volumetric network into a series of connected and closed layers, and the nodes are traversed layer by layer, incrementally from the innermost to the outermost, yielding an SFC covering the entire network, provably at least once and at most a constant number of times. To the best of our knowledge, BLOW-UP is the first algorithm that realizes linearization in 3D volumetric WSNs. It does not require advance knowledge of location or distance information. It is also scalable with a nearly constant per-node storage cost and message cost. Extensive simulations under various networks demonstrate its effectiveness on nodes’ covered times, coverage rate, and covering speed.

References

  1. M. Ahmed and S. Bokhari. 2007. Mapping with space filling surfaces. IEEE Transactions on Parallel and Distributed Systems 18, 9, 1258--1269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. F. Akyildiz and M. C. Vuran. 2010. Wireless Sensor Networks. John Wiley & Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Bader. 2012. Space-Filling Curves: An Introduction with Applications in Scientific Computing. Texts in Computational Science and Engineering, Vol. 9. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. M. Bahi, A. Makhoul, and A. Mostefaoui. 2008. Hilbert mobile beacon for localisation and coverage in sensor networks. International Journal of Systems Science 39, 11, 1081--1094. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. X. Ban, M. Goswami, W. Zeng, X. Gu, and J. Gao. 2013. Topology dependent space filling curves for sensor networks and applications. In Proceedings of the IEEE INFOCOM Conference (INFOCOM’13). 2166--2174.Google ScholarGoogle Scholar
  6. R. S. Blum, S. A. Kassam, and H. V. Poor. 1997. Distributed detection with multiple sensors II. Advanced topics. Proceedings of the IEEE 85, 1, 64--79.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Cadger, K. Curran, J. Santos, and S. Moffett. 2013. A survey of geographical routing in wireless ad-hoc networks. IEEE Communications Surveys and Tutorials 15, 2, 621--653.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato, M. Koibuchi, T. Rokicki, and J. C. Sancho. 2012. A survey and evaluation of topology-agnostic deterministic routing algorithms. IEEE Transactions on Parallel and Distributed Systems 23, 3, 405--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Gao and L. Zhang. 2006. Load-balanced short-path routing in wireless networks. IEEE Transactions on Parallel and Distributed Systems 17, 4, 377--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. R. Garey, D. S. Johnson, and R. E. Tarjan. 1976. The planar Hamiltonian circuit problem is NP-complete. SIAM Journal on Computing 5, 4, 704--714.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Gold. 1999. Crust and anti-crust: A one-step boundary and skeleton extraction algorithm. In Proceedings of ACM Symposium on Computational Geometry. 189--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Gold and J. Snoeyink. 2001. A one-step crust and skeleton extraction algorithm. Algorithmica 30, 2, 144--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Hilbert. 1891. Ueber die stetige abbildung einer line auf ein fachenstuck. Mathematische Annalen 38, 3, 459--460.Google ScholarGoogle ScholarCross RefCross Ref
  14. H. Jiang, T. Yu, C. Tian, G. Tan, and C. Wang. 2015. Connectivity-based segmentation in large-scale 2-D/3-D sensor networks: Algorithm and applications. IEEE/ACM Transactions on Networking 23, 1, 15--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. B. Johnson and D. A. Maltz. 1996. Dynamic source routing in ad hoc wireless networks. In Mobile Computing. Kluwer International Series in Engineering and Computer Science, Vol. 353. Kluwer, 153--181.Google ScholarGoogle Scholar
  16. M. Kamat, A. S. Ismail, and S. Olariu. 2007. Modified Hilbert space-filling curve for ellipsoidal coverage in wireless ad hoc sensor networks. In Proceedings of the IEEE ICSPC Conference (ICSPC’07). 1407--1410.Google ScholarGoogle Scholar
  17. S. Kar, J. M. F. Moura, and K. Ramanan. 2012. Distributed parameter estimation in sensor networks: Nonlinear observation models and imperfect communication. IEEE Transactions on Information Theory 58, 6, 3575--3605. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Koutsonikolas, S. M Das, and Y. C. Hu. 2007. Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications 30, 13, 2577--2592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Kuhn, R. Wattenhofer, and A. Zollinger. 2003. Worst-case optimal and average-case efficient geometric ad-hoc routing. In Proceedings of the ACM MobiHoc Conference (MobiHoc’03). 267--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. Li, C. Zhang, J. Luo, S. Xin, and Y. He. 2014. LBDP: Localized boundary detection and parametrization for 3-D sensor networks. IEEE/ACM Transactions on Networking 22, 2, 567--579. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W. Liang, P. Schweitzer, and Z. Xu. 2013. Approximation algorithms for capacitated minimum forest problems in wireless sensor networks with a mobile sink. IEEE Transactions on Computers 62, 10, 1932--1944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Luo, L. Pu, M. Zuba, Z. Peng, and J.-H. Cui. 2014. Challenges and opportunities of underwater cognitive acoustic networks. IEEE Transactions on Emerging Topics in Computing 2, 2, 109--211.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Madhja, S. Nikoletseas, and T. P. Raptis. 2015. Distributed wireless power transfer in sensor networks with multiple mobile chargers. Computer Networks 80, 7, 89--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. Masazade, R. Niu, P. K. Varshney, and M. Keskinoz. 2010. Energy aware iterative source localization for wireless sensor networks. IEEE Transactions on Signal Processing 58, 9, 4824--4835. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Mostefaoui, A. Boukerche, M. A. Merzoug, and M. Melkemi. 2015. A scalable approach for serial data fusion in wireless sensor networks. Computer Networks 79, 14, 103--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. 2009. On distributed averaging algorithms and quantization effects. IEEE Transactions on Automatic Control 54, 11, 2506--2517.Google ScholarGoogle ScholarCross RefCross Ref
  27. Y. Noh, U. Lee, P. Wang, B. S. C. Choi, and M. Gerla. 2013. VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing 12, 5, 895--908. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Patil, S. R. Das, and A. Nasipuri. 2004. Serial data fusion using space-filling curves in wireless sensor networks. In Proceedings of the IEEE SECON Conference (SECON’04). 182--190.Google ScholarGoogle Scholar
  29. G. Peano. 1890. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen 36, 1, 157--160.Google ScholarGoogle ScholarCross RefCross Ref
  30. C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos. 2014. Sensor search techniques for sensing as a service architecture for the Internet of Things. IEEE Sensors Journal 14, 2, 406--420.Google ScholarGoogle ScholarCross RefCross Ref
  31. T. L. Porta, C. Petrioli, C. Phillips, and D. Spenza. 2014. Sensor mission assignment in rechargeable wireless sensor networks. ACM Transactions on Sensor Networks 10, 4, 60:1--60:39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. Rajagopalan and P. K. Varshney. 2006. Data aggregation techniques in sensor networks: A survey. IEEE Communications Surveys and Tutorials 8, 4, 48--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Sagan. 1994. Space-Filling Curves. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  34. R. C. Shah, S. Roy, S. Jain, and W. Brunette. 2003. Data mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks 1, 2, 215--233.Google ScholarGoogle ScholarCross RefCross Ref
  35. F. Spitzer. 2001. Principles of Random Walk. Vol. 34. Springer.Google ScholarGoogle Scholar
  36. R. Sugihara and R. K. Gupta. 2011. Path planning of data mules in sensor networks. ACM Transactions on Sensor Networks 8, 1, 1:1--1:27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. G. Tan, H. Jiang, J. Liu, and A.-M. Kermarrec. 2014. Convex partitioning of large-scale sensor networks in complex fields: Algorithms and applications. ACM Transactions on Sensor Networks 10, 3, 41:1--41:23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. Tan, H. Jiang, S. Zhang, Z. Yin, and A.-M. Kermarrec. 2013. Connectivity-based and anchor-free localization in large-scale 2D/3D sensor networks. ACM Transactions on Sensor Networks 10, 1, 6:1--6:21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Tan, G. Xing, J. Wang, and B. Liu. 2011. Performance analysis of real-time detection in fusion-based sensor networks. IEEE Transactions on Parallel and Distributed Systems 22, 9, 1564--1577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. O. Tekdas, V. Isler, L. J. Hyun, and A. Terzis. 2009. Using mobile robots to harvest data from sensor fields. IEEE Wireless Communications 16, 1, 22--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy. 2014. Distributed mobile sink routing for wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials 16, 2, 877--897.Google ScholarGoogle ScholarCross RefCross Ref
  42. R. Viswanathan and P. K. Varshney. 1997. Distributed detection with multiple sensors I. Fundamentals. Proceedings of the IEEE 85, 1, 54--63.Google ScholarGoogle ScholarCross RefCross Ref
  43. C. Wang and H. Jiang. 2015. SURF: A connectivity-based space filling curve construction algorithm in high genus 3D surface WSNs. In Proceedings of the IEEE INFOCOM Conference (INFOCOM’15). 981--989.Google ScholarGoogle Scholar
  44. C. Wang, H. Ma, Y. He, and S. Xiong. 2012. Adaptive approximate data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems 23, 6, 1004--1016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Xia, H. Wu, and M. Jin. 2014. Trace-routing in 3D wireless sensor networks: A deterministic approach with constant overhead. In Proceedings of the ACM MobiHoc Conference (MobiHoc’14). 357--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. S. Xia, X. Yin, H. Wu, M. Jin, and X. D. Gu. 2011. Deterministic greedy routing with guaranteed delivery in 3D wireless sensor networks. In Proceedings of the ACM MobiHoc Conference (MobiHoc’11). 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. L. Xie, Y. Shi, Y. T. Hou, and H. D. Sherali. 2012. Making sensor networks immortal: An energy-renewal approach with wireless power transfer. IEEE/ACM Transactions on Networking 20, 6, 1748--1761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. K. Yang. 2014. Wireless Sensor Networks. Springer.Google ScholarGoogle Scholar
  49. F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. 2002. A two-tier data dissemination model for large-scale wireless sensor networks. In Proceedings of the ACM MobiCom Conference (MobiCom’02). 148--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. H. Zhang and H. Shen. 2009. Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems 20, 10, 1526--1539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. H. Zhou, N. Ding, M. Jin, S. Xia, and H. Wu. 2011. Distributed algorithms for bottleneck identification and segmentation in 3D wireless sensor networks. In Proceedings of the IEEE SECON Conference (SECON’11). 494--502.Google ScholarGoogle Scholar
  52. M. Zhu, S. Ding, Q. Wu, R. R. Brooks, N. S. V. Rao, and S. S. Iyengar. 2010. Fusion of threshold rules for target detection in wireless sensor networks. ACM Transactions on Sensor Networks 6, 2, 18:1--18:7. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. BLOW-UP: Toward Distributed and Scalable Space Filling Curve Construction in 3D Volumetric WSNs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Sensor Networks
      ACM Transactions on Sensor Networks  Volume 12, Issue 4
      November 2016
      309 pages
      ISSN:1550-4859
      EISSN:1550-4867
      DOI:10.1145/2994619
      • Editor:
      • Chenyang Lu
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 September 2016
      • Accepted: 1 June 2016
      • Revised: 1 January 2016
      • Received: 1 April 2015
      Published in tosn Volume 12, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader